
Amber: A Zero-Interaction Honeypot
with Distributed Intelligence

A thesis submitted in partial fullfilment of the
requirements for the degree of

MASTERS OF SCIENCE

of

RHODES UNIVERSITY

by

Adam Schoeman

January 2014

Abstract

For the greater part, security controls are based on the principle of Decision

through Detection (DtD). The exception to this is a honeypot, which analyses inter-

actions between a third party and itself, while occupying a piece of unused informa-

tion space. As honeypots are not located on productive information resources, any

interaction with it can be assumed to be non-productive. This allows the honeypot

to make decisions based simply on the presence of data, rather than on the behaviour

of the data. But due to limited resources in human capital, honeypots’ uptake in the

South African market has been underwhelming. Amber attempts to change this by

offering a zero-interaction security system, which will use the honeypot approach of

Decision through Presence (DtP) to generate a blacklist of third parties, which can

be passed on to a network enforcer. Empirical testing has proved the usefulness of

this alternative and low cost approach in defending networks. The functionality of

the system was also extended by installing nodes in different geographical locations,

and streaming their detections into the central Amber hive.

Acknowledgements

Security controls have traditionally been based on the principle of Decision through De-
tection (DtD). The exception to this is a honeypot, which analyses interactions between
a third party and itself. As honeypots are not located on production information sys-
tems, any interaction with it can be assumed to be likley malicious. This allows the
honeypot system to make decisions based simply on the presence of data, rather than
on the behaviour charactaristics or contents of the data. But due to limited resources in
human capital, honeypots’ uptake in the South African market has been underwhelming.
Amber prototype system presented in this work, attempts to change this by offering a
zero-interaction security system, which reduced the need for human interaction. This
approach of Decision through Presence (DtP) is used to generate a blacklist of remote
Internet Addresses. These lists can be passed on to a network security enforcement system
such as a firewall.. Empirical testing has proved the usefulness of this alternative and low
cost approach in defending networks. The functionality of the system was also tested by
installing nodes in different geographical locations, and streaming their detections into
the central Amber collection system.

i

Contents

1 Introduction 1

1.1 Background . 1

1.2 Research Question and Goals . 2

1.3 Limitations and Scope . 3

1.4 Organisation of Thesis . 4

2 Background and Related Concepts 5

2.1 History of Honeypots . 5

2.2 Honeypot Classifications . 7

2.2.1 Prevention Honeypots . 8

2.2.2 Detection Honeypots . 8

2.2.3 High Interaction Honeypots . 9

2.2.4 Low Interaction Honeypots . 9

2.2.5 Medium Interaction Honeypots . 10

2.3 Honeypot Deployments: Server and Client-side 10

2.4 Other Honeypot Systems . 11

2.4.1 Honeytokens . 11

2.4.2 Artillery . 12

2.5 Advantages of Honeypot Deployments . 12

2.6 Disadvantages of Honeypot Deployments 14

ii

2.7 Liability and Ethical Concerns . 14

2.8 Security Models . 15

2.8.1 Decision through Detection (DtD) 16

2.8.2 Decision through Presence (DtP) 16

2.9 Summary . 17

3 A Hybrid Security Model 18

3.1 Decision through Detection and Decision through Presence 18

3.1.1 Discovery Phase . 18

3.1.2 Action Phase . 21

3.1.3 Costing Example of DtD Security Model 24

3.1.4 Costing Example of DtP Security Model 25

3.1.5 Model and Phase Summary . 26

3.2 Amber: a Hybrid Security Model Implementation 27

3.2.1 Zero-Interaction . 28

3.2.2 Near Zero False Positives . 30

3.2.3 Improves the Security Posture of the Environment 31

3.3 Technical Design . 31

3.3.1 Hardware . 33

3.3.2 Discovery Function: Listening Daemon 33

3.3.3 Action Phase: Send IP to Enforcer 35

iii

3.3.4 Ancillary Systems: Packet Capturing System 38

3.3.5 Further Gains with Parallel Processing 41

3.4 Implementing Distributed Intelligence . 44

3.4.1 Capturing Packets . 50

3.4.2 Time Synchronization . 52

3.5 Summary . 52

4 Data Analysis 53

4.1 Testing Process . 53

4.2 Test Results: Single Node with Segment Validation 54

4.3 Test Results: Expanding to Geographically Dispersed Nodes 58

4.3.1 Amber Node: South Africa . 58

4.3.2 Amber Node: Germany . 60

4.3.3 Amber Node: United States . 63

4.4 Visualising Source IP addresses . 67

4.5 Gains Through Distributed Intelligence 76

4.5.1 Weighted Scoring . 77

4.5.2 Profiling Countries . 79

4.5.3 Local Bias . 81

4.5.4 Combined Data Analysis . 82

4.6 Enterprise Deployment . 83

iv

4.6.1 Small Networks . 83

4.6.2 Complex Networks . 84

4.6.3 Command and Control . 86

4.7 Summary . 87

5 Conclusion 89

5.1 Research Goals . 91

5.2 Remarks on Research Findings . 92

5.3 Future Enhancements . 93

5.3.1 Geographically Distributed Nodes Linked Through Commonalities 93

5.3.2 Impacts of Time Zone on the Connections 94

5.3.3 Deeper Understanding of Attacker and Victim Bias 94

5.3.4 Basic Automated Reporting . 95

5.3.5 Normalise Scoring Based on Socioeconomic Data 95

5.3.6 IPv6 Integration . 96

References 97

v

List of Figures

3.1 Daily cost comparison between DtP and DtD 27

3.2 The hybrid model . 28

3.3 Typical Amber deployment . 29

3.4 Hybrid security model components . 32

3.5 Malicious activity verified via wiretap . 36

3.6 Tshark command . 39

3.7 Tshark command - multiple conditions . 40

3.8 Processing time per IP (500mb pcap file) 41

3.9 Python wrapper for parallel data analysis 42

3.10 Identifying optimum NPROC setting . 44

3.11 Network utility is lost for each node deployed 45

3.12 No network utility is lost for nodes deployed externally 46

3.13 Time zone differences between distributed Amber nodes 47

3.14 Amber architecture with centralised Command and Control system 49

3.15 12 hour capture window . 51

3.16 24 hour capture window . 51

4.1 Amber connection request log file . 55

4.2 Amber transaction information log file . 55

4.3 Network IP filtering according to Amber 56

vi

4.4 Google Maps API Javascript array . 68

4.5 Marker size scales with count variable . 69

4.6 Marker sizes . 70

4.7 World map visualisation of the SA node’s captured data 70

4.8 European map visualisation of the SA node’s captured data 71

4.9 World map visualisation of the German node’s captured data 72

4.10 European map visualisation of the German node’s captured data 72

4.11 World map visualisation of the US node’s captured data 73

4.12 European map visualisation of the US node’s captured data 74

4.13 South African map visualisation of the ZA node’s captured data 75

4.14 Amber architecture for a small network . 84

4.15 Amber architecure for a complex network with CnC server 85

vii

List of Tables

3.1 Ports that Amber exposes . 35

3.2 Processing times as source arguments increase 40

3.3 Identifying optimum NPROC setting . 44

4.1 Node connection statistics for opened ports 56

4.2 South African node . 59

4.3 Top 10 attributed countries for South African node 59

4.4 Port profile for attributed connections to SA node 61

4.5 German node . 62

4.6 Top 10 attributed countries for German node 62

4.7 Port profile for attributed connections to German node 64

4.8 Top 10 attributed countries for the United States node 65

4.9 Port profile for attributed connections to US node 66

4.10 United States node . 67

4.11 Length of threat streams per Amber node 76

4.12 Threats identified by the weighted scoring method (country and continent) 78

viii

1 Introduction

1.1 Background

The controls that information security practitioners have at their disposal to protect the
information technology assets under their custodianship can be split into two distinct
categories. Each of these two categories differ in the way that they implement their
specific checks and remediations, which makes it possible to view each category as a
different security model.

The first category covers the more common security controls, such as antivirus, firewalls,
intrusion detection/prevention systems and email filters. According to Cohen (1989) an-
tivirus software, at its very core, uses signature repositories to compare executed code to
known bad snippets of code, labelling them as viruses. Firewalls, as noted by Ioannidis,
Keromytis, Bellovin, and Smith (2000) traditionally define what ports and services are
allowed to access a network node and block everything else. Intrusion Prevention Systems
(IPS) use the same principle as antivirus, inspecting network traffic and attempting to
match known bad sequences to incoming traffic as detailed by Heady, Luger, Maccabe,
and Servilla (1990). Michelakis, Androutsopoulos, Paliouras, Sakkis, and Stamatopoulos
(2004) describes email filters as making a decision on whether an email is spam based on
numerous factors such as destination, source and content. They all share the trait that
they implement their information security enhancements by first analysing some informa-
tion that they are presented with. Following the analysis of the information stream, the
stream is given a rating which can vary in degrees from ‘good’ to ‘bad’. Armed with a
rating, Oberheide, Cooke, and Jahanian (2008) describes how the security control is able
to make a decision on how to handle the stream. This process of decision-making can
be referred to as Decision through Detection (DtD), because it requires the information
security control to base its decision on the behaviour of the information flow that is pre-
sented. If the behaviour matches a schematic that is seen as being malicious, the security
control is triggered. The process of building a behavioural database is intensive and prone
to both false positives and negatives, as detailed by Cohen (1989) in Models of Practical
Defenses Against Computer Viruses.

1

The second category of security controls is one that is seen far less frequently than its
detection counterpart, but is still employed by honeypots. A honeypot is an information
security system that has no productive business use, because it occupies non-production IP
address space, such as an unused IP address. Based on this Spitzner (2002); Provos (2003)
theorise that any interaction with the honeypot is automatically suspicious, regardless of
the behavioural traits of the interaction. By not needing to take into consideration the
behaviour of the analysed data flows, honeypots use a different decision system based
on the presence of information and not the behaviour. This is referred to as Detection
through Presence (DtP). Decision through Presence (DtP) is unique to honeypots by
virtue of its links to the surrounding information resources. The honeypot’s security
model uses a simplistic method of classifying information streams as possibly malicious,
but because there is no reason for it to intervene against the information stream, it
cannot action the intelligence that it gathers in the same way as the security model used
by firewalls or antivirus security controls. Information streams that a honeypot captures
can be offloaded for further investigation and used as a basis of discovering new attack
vectors and methods.

While each of these two security models are distinctly different, they can both be split
into two phases: Discovery and Action. The firewall security model relies on signatures to
discover a malicious information stream, and then takes action against it by blocking it or
alerting its presence. The honeypot security model discovers non-productive information
streams by occupying non-productive space, and based on that is able to pass the infor-
mation stream to begin further analysis. Each of the security models has an advantage in
a different phase; an advantage that manifests as efficiency (in terms of effort) compared
to the other security model in the same phase. DtP is efficient at identifying malicious
sources, while DtD is efficient at actioning intelligence.

1.2 Research Question and Goals

This research attempts to answer the question of whether or not a hybrid security control
is able to improve the information security posture of a network by denying malicious
sources access to network assets. Such a security control is a hybrid because it is based on
a combination of the most efficient phases of the DtD and DtP security models. The goal

2

is to build a physical security control that adheres to the principles of this hybrid security
model; a model that uses the Discovery phase of the DtP model and the Action phase of the
DtD model. The model will then be empirically tested by deploying the physical security
control. Once the security control has been tested and the model verified, the possibility
of extending its usefulness will be explored by expanding the model into multiple nodes.
The nodes will pool their findings with the aim of further improving the security posture
of the network by increasing the internet surface area that they cover.

The research also tries to expand on the potential usefulness of the system by distributing
the nodes to different geographical regions. The intention is to increase the internet surface
area that the control is attached to, and to diversify the sources of information. The data
sets gathered from these distributed nodes will also be analysed and may discredit the
use of source IP address-based blacklists that distribute their findings outside the region
in which they were collected. There may be, however, some value found in attributing
the source IP addresses into regions, and then constructing analysis systems based on the
cumulative results per country.

1.3 Limitations and Scope

Certain limitations did impact this research, the most notable being a lack of IPv6 test-
ing. The security control that was built to act as an empirical testing tool for the new
security model was not able to be placed on networks that generated a sufficient amount
of production IPv6 traffic to accurately draw any conclusion. The testing was also limited
to only TCP/IP traffic (no ICMP or UDP traffic) because the connection state built into
the protocol was needed to prevent possible corruption caused by traffic spoofing. The
scope of this research is thus limited to IPv4.

The system also needs to be relevant to enterprise deployment, meaning that the scope
would exclude enhancements that were unrelated or unrealistic in terms of a typical
enterprise network.

3

1.4 Organisation of Thesis

The remainder of this document is structured as follows:

• Chapter 2 discusses the literature survey that was undertaken in the field of honey-
pots and how they differ from more traditional security controls, and the security
models that dictate their construction. It introduces the concepts that are discussed
throughout this thesis and serves as an introduction to the idea of a honeypot.

• Chapter 3 deconstructs the security models that influence the workings of some of
the traditional security controls and honeypots, and proposes a formula that can be
used to cost the security model’s two phases. With this information a new security
model is put forward and a technical specification to conform to it is designed, and
which will become the basis of testing the new security model.

• Chapter 4 analyses the data that was collected by Amber, the software system
defined in chapter 3 and details the findings as well as certain strategies that can be
used to improve signature-based controls with the type of data that was collected.

• Chapter 5 outlines enhancements that would benefit future deployments of the Am-
ber ecosystem but that were out of the scope for the research goals presented here.
The research is also concluded in this chapter.

4

2 Background and Related Concepts

At the core of this research is the unique way in which a honeypot is able to contribute to
the information security posture of a network, but there are many differences within the
world of honeypots. This chapter serves as an introduction to the terms and concepts that
frequent the field of honeypots as well as a discussion on the security models that group
together traditional signature-based security controls and honeypots. The remainder of
the chapter will explore the following topics:

Section 2.1 looks at the history of honeypots and how the concept has evolved over the
years.

Section 2.2 expands on how honeypots are classified, in terms of how much functionality
they are able to expose to potential attackers, and the honeypots’ deployment goal.

Section 2.3 explains the differences in honeypot deployments, be it server or client side.

Section 2.4 takes a look at some of the less traditional honeypots and elaborates on what
aspects make them unique.

Section 2.5 lists the potential advantages of deploying a honeypot.

Section 2.6 lists the potential disadvantages of deploying a honeypot

Section 2.7 tackles the problem of exposing the environment to certain legal and ethical
liabilities.

Section 2.8 formally defines the two security models that make up signature-based security
controls and honeypots.

Section 2.9 serves as a summary for the chapter.

2.1 History of Honeypots

Antivirus, firewalls, intrusion detection/prevention systems and email filters all share
a common trait in that they implement their information security enhancements by
analysing the information that they are presented with.

5

According to Cohen (1989) antivirus software uses signature repositories to compare exe-
cuted code to known bad snippets of code, labelling them as viruses. Firewalls, as noted
by Ioannidis et al. (2000) traditionally define what ports and services are allowed to ac-
cess a network node and block everything else. Intrusion Prevention Systems (IPS) use
the same principle as antivirus, inspecting network traffic and attempt to match known
bad sequences to incoming traffic as detailed by Heady et al. (1990). Michelakis et al.
(2004) describes email filters as making a decision on whether an email is spam based on
numerous factors such as destination, source and content.

Each one of the above basic information security controls has a list of predefined patterns
or actions that have been classified as malicious, and when they detect them they take
action based on the severity of the identified threat, a process that is detailed by Oberheide
et al. (2008). The process of building a behavioural database is intensive and prone to
both false positives and negatives, as explored by Cohen (1989).

A honeypot, however, is an information security system that has no productive business
use, because it occupies non-production IP address space, such as an unused IP address.
Based on this Spitzner (2002); Provos (2003) theorise that any interaction with the hon-
eypot is automatically suspicious, regardless of the behavioural traits of the interaction.

One of the earliest examples of a honeypot was a chroot jail that was built on a produc-
tion system by Cheswick (1992) who worked at AT&T Laboratories. In 1991, a cracker
attempted to use a well known sendmail DEBUG vulnerability to download a copy of the
server’s passwd file (a file that contains usernames and encrypted passwords) for a server
that Cheswick administered (Cheswick, 1992). The server had been set up previously
to expose a set of services that were not connected to production functions and which
logged all commands that they processed. The log files could be analysed later, and, in
this early case, required Cheswick to maintain the interaction with the cracker by man-
ually intervening and emailing the cracker a bogus passwd file. After many months of
interactions, Cheswick was able to learn a great deal about the cracker, enough to be able
to recognise his or her typing style when logged into other servers on the network. This
kind of engagement also led to these concepts of luring malicious parties onto disposable
systems being introduced into popular fiction, by Stoll (1995) in his book The Cuckoo’s
Egg: Tracking a Spy Through the Maze of Computer Espionage.

6

Network Associate’s Cybercop Sting (PR Newswire, 1998), released 14 July 1998, is the
earliest version of a commercial honeypot, originally referred to as a decoy system. It
offered consumers a way to audit and monitor intruders before legitimate data and data
systems were at risk. Prior to that, Cohen (2012) at Fred Cohen & Associates released
a package called The Deception Toolkit. It provided an open source alternative to the
commercially licensed Cybercop Sting and enabled the open source community to experi-
ment both with the idea of allowing intruders to compromise assets and with using those
interactions as a way of learning how to defend against them. Cohen’s toolkit formed a
basis from which the community could start actively researching the field of honeypots
as his system was a collection of Perl scripts. One such researcher was Lance Spitzner
(Spitzner, 1999), founder of the Honeynet Project, and author of Honeypots: Tracking
Hackers.

In his book, Spitzner (2002) outlines the foundation for modern honeypots. It contains
real world examples of why they are useful, as well as the core concepts of honeypots:
occupying unused and unproductive internet space, with the intent of luring and learning
about the actions of malicious attackers. In his paper, To Build a Honeypot, Spitzner
(1999) details the basics of building a server that can be used to record the steps and
actions taken by a malicious intruder. The server (or honeypot) would be separated from
the valued network so that it could safely sustain damage and report back on how that
damage was inflicted. To Build a Honeypot led Spitzner and co-author Niels Provos to
create a novel and simple way of deploying a honeypot, namely through Honeyd (Provos,
2003), a virtual honeypot daemon. Honeyd can simulate a TCP stack so as to further
fool would be attackers, and can be configured with a number of templates which mirror
certain stereotypical production servers. Spitzner and Provos’ research on the potential of
harnessing unused space on networks as an additional method of monitoring unidentified
intruders laid the foundation for numerous future works on the subject, due to the authors’
decision to build open source systems.

2.2 Honeypot Classifications

Honeypots can be classified according to their goals and the manner in which they attempt
to collect information. At the highest level, honeypot goals can be seen as being either

7

detection driven or prevention driven. A honeypot can be further classified as a low,
medium or high interaction honeypot, based on how it collects and controls data, which
is another core function. Zhang, Zhou, Qin, and Liu (2003) noted that a honeypot has two
basic functions: data control and data capture. Data control relates to the honeypot’s
ability to expose a service or port that a potential attack can connect to, while data
capture relates to the recording and archiving of inbound and outbound data, for the
purpose of studying the full interaction.

2.2.1 Prevention Honeypots

Prevention honeypots attempt to prevent an attacker from compromising production sys-
tems, by luring them to focus on the honeypot instead of the production systems. While
valuable, they are not well suited to automated worms because these grades of attacks do
not incur a time cost, as explored by Zhang et al. (2003). This is not to say that prevention
honeypots cannot be used against worms, as shown by La Brea (Chen, Gao, and Kwiat,
2003) and the Code Red worm, a worm that spread with incredible speed as noted by
Moore, Shannon, et al. (2002);Chen et al. (2003). In this case, the prevention honeypot
was designed to slow down the spread of Code Red by filling unused IP addresses on the
network with services that incrementally fed the worm’s attacks.

2.2.2 Detection Honeypots

Detection honeypots are similar to intrusion detection systems (IDS) in that they both
issue an alert when an attack occurs, but while IDS systems rely on signatures to trigger
an alert, a detection honeypot generates alerts based on system activities. Research done
by Kuwatly, Sraj, and Masri (2004) shows that this subtle nuance enables detection hon-
eypots to detect unknown attacks, or attacks which have no signature. These honeypots
are deployed as a method to augment the creation of IDS signatures, as shown by Kreibich
and Crowcroft (2004) in the form of the Honeycomb project.

8

2.2.3 High Interaction Honeypots

Honeypots can be further split into high and low interaction honeypots as originally
stated by Provos and later refined by Alata, Nicomette, Kaâniche, Dacier, and Herrb
(2006). Both high and low interaction honeypots share a trait in that they both expose
systems with services in an effort to entice an attacker. The difference, however, lies in the
fact that, in a high interaction honeypot, the systems are fully functional and the exposed
services are real, whereas in a low interaction honeypot, the above are both fake. This
means that any attacker who connects to a high interaction honeypot will be faced with
a complete service and will be able to further his or her attack beyond just establishing
a connection. The increased interaction between the attacker and the honeypot results
in an increase in the quantity and quality of information that the honeypot is able to
record, compared to a low interaction honeypot. An example of such a honeypot is Sebek
and its evolution Qebek, as explored by Alata et al. (2006);Balas and Viecco (2005);
McCarty (2003), both of which aim to capture as much information as possible regarding
the connections that access it.

2.2.4 Low Interaction Honeypots

Baecher, Koetter, Holz, Dornseif, and Freiling (2006) states that low interaction honeypots
still occupy an unused asset and expose services which are enticing to an attacker (either
because they are known as being vulnerable, or are susceptible to authentication brute
force attacks) and log the data about the initial communication. The services that the
low interaction honeypot exposes are not complete or fully functional and only serve to
entice an attacker to establish a connection. The honeypot La Brea, as mentioned earlier,
is a low interaction honeypot. It does not mimic functional copies of services and its only
goal is to keep the connection with the worm open for as long as possible.

Based on the work by Alata et al. (2006) it would seem that high interaction honeypots are
superior to low interaction variants. However, while it is true that there is the potential
for high quality information gathering from high interaction honeypots, this is offset
against the fact that the honeypot itself needs to be more complex and the information
gathered requires more in-depth analysis. Certain honeypots do not need this level of data

9

interrogation to achieve their goals. Dionaea, a newer version of the work originally done
by Baecher et al. (2006), was written by PhiBo (2013) and is one such low interaction
honeypot. It attempts to capture a copy of a malware payload that is being launched
against a vulnerable emulated service hosted by Dionaea. The honeypot is only concerned
with gaining a copy of the payload, so it is able to use emulated services to entice an
attacker to launch the payload. An emulated service will not be able to function beyond
the payload being launched against it, but as the payload is already captured at this
stage, the honeypot does not benefit from any increased complexity or an increase in the
life of any service interaction.

2.2.5 Medium Interaction Honeypots

Sitting in between high and low interaction are the so-called medium interaction honey-
pots. As outlined in work done by Wicherski (2006), these types of honeypots contain
aspects of high interaction types in that they do interact with payloads that are sent to
the services that are being emulated, but not to the degree of a complete service. The
medium interaction honeypot uses a virtual layer to emulate the services. Medium inter-
action honeypots have been successful in collecting botnet malware that is downloaded
after a machine is compromised. As Wicherski notes, the services of a medium interac-
tion honeypot are able to mimic a vulnerable system, accept the vulnerability, analyse it
and retrieve the botnet malware. An example of this is Nepenthes, which is a malware
collection agent developed by Baecher et al. (2006), and which is able to following staging
payloads and download complete botnet malware.

2.3 Honeypot Deployments: Server and Client-side

Traditionally honeypots were deployed as server side applications that waited for incoming
connections. With an increase in the prevalence of client-side attacks in the form of drive-
by-download (Cova, Kruegel, and Vigna, 2010; Rieck, Krueger, and Dewald, 2010; Egele,
Kirda, and Kruegel, 2009) and watering-hole attacks (Net Security, 2013) both of which
rely on users connecting to a server that is hosting malicious content, honeypot deployment

10

strategies have also expanded to include client-side honeypots. Client-side honeypots
were first proposed by Spitzner (2002) and later employed by Göbel and Dewald (2011)
as a way of identifying malicious servers that were trying to exploit vulnerabilities on
connected clients. As stated by Spitzner (2002) client-side honeypots differ from server-
side honeypots in that they are installed on a machine that acts as a client, and are
configured in such a way to lure malicious servers into attacking them. This breed of
honeypot crawls the internet looking for malicious servers by analysing the interactions
between the honeypot and the server, flagging interactions that the honeypot sees as being
malicious. The Honeynet Project’s HoneyC (Seifert, Welch, Komisarczuk, et al., 2007)
and more recently work by Nazario (2009) in the form of a virtual client-side honeypot
PhoneyC, are both examples of client-side honeypots. As Seifert, Welch, Komisarczuk,
et al. (2007) details, the strength of a client-size honeypot is that it has the ability to
collect information from servers hosting malware, and how they are targeting clients.

2.4 Other Honeypot Systems

There are some honeypots that fulfil the basic requirements of a dictionary definition, but
which have goals that are not aligned to those of traditional honeypots. Others collect
and control data in a manner that is significantly different to that of the honeypots listed
in sections 2.2 and 2.3. Some of these are discussed below.

2.4.1 Honeytokens

The term honeytoken was coined by de Barros (2003) but was popularised by Spitzner
(2003) in his paper Honeypots: Catching the Insider Threat. He defined a honeytoken
as “a digital or information system resource whose value lies in the unauthorized use of
that resource”. A honeytoken is therefore any digital information that has no real value,
but which might be seen as having value to a malicious entity. An example would be an
administrative username and password to a server that does not exist or bogus credit card
information. The lack of utility means that at no point should any entity in a network
be referencing or using the information, and if it is, it can be deduced that it is doing so

11

for nefarious reasons. An example of a deployed honeytoken would be a table in a SQL
database that is named director_salaries and which is populated with dummy names
and figures. Access to that table could indicate a user that is trawling for information and
could be someone that is a potential insider risk. Another example of a honeytoken is a
fake credit card number that is injected into a database of legitimate credit card numbers.
If a payment processing system detects that the fake credit card number is being used, it
can be assumed that there is a high possibility that the database has been compromised.

2.4.2 Artillery

Artillery1 is another pseudo-honeypot that deviates from the traditional honeypot goal
structure in that it focuses on instant-prevention. It was created by Dave Kennedy
(Kennedy, 2012) and, unlike a traditional honeypot, it is installed as an agent on a
productive server (namely, a server with business utility). The Artillery agent will then
open a group of ports that the server is not using and wait for connections on those ports.
If a connection is detected, all future attempts from that IP address to that service are au-
tomatically blocked by Artillery. It is this automated defensive action that distinguishes
Artillery from other honeypots.

2.5 Advantages of Honeypot Deployments

Honeypots function in a distinctly different manner to other security controls, which
leads them to have a certain set of unique advantages. If one is deployed as a detection
honeypot (opposed to a prevention one), then the insight that the honeypot is able to
produce is different to that of firewalls and antivirus systems. A detection honeypot can
intercept copies of malware that have not yet been identified as malicious by signature-
based systems, and can then safely distribute copies to those systems. This increases the
speed at which those systems can update their definitions (Kuwatly et al., 2004). They
also allow researchers to gain copies of worms, which was used by Moore et al. (2002) to
dissect source code in order to learn what methods worms use to spread. Honeypots are

1
https://www.trustedsec.com/downloads/artillery/

12

also relatively cheap to deploy because, traditionally, they do not need to be geared to
function at multiple gigabits of throughput. Since the internet space that they occupy is
not used for any productive purpose, traffic interacting with the honeypot is limited to
the non-productive variety and is a fraction of the traffic that an inline firewall would face
(Akkaya and Thalgott, 2012).

There are also a certain grade of attacks that simply do not affect honeypots, specifically
denial of service attacks (Needham, 1993), distributed or not. Inline devices are limited
by the amount of data they can inspect based on the hardware they are built on and
the technology available. Firewalls and IDS applications are limited to the amount of
simultaneous connections that they can process, a trait that has left them susceptible
to SYN flooding. SYN flooding is a process where an attack fills up all available SYN
connections, which leaves the firewall unable to process any further connections as detailed
by Schuba et al. (1997). A firewall will traditionally fail-close in such a scenario, thus
blocking all connections, but according to Garfinkel, Pfaff, Chow, Rosenblum, and Boneh
(2003); Iheagwara, Awan, Acar, and Miller (2006); Sheth and Thakker (2013); Yang,
Song, and Shen (2001) there are some IDS systems that will fail-open in such a scenario,
allowing all connections to effectively bypass it. This sort of attack will not bypass a
honeypot because it does not need to fail-open to allow traffic to pass through, because
it is not an inline device. A denial of service attack against a honeypot will more than
likely alert the network security administrators that the network is under attack.

Honeypots also require very little configuration to deploy because they do not require any
research-driven signatures to add value. Projects such as Honeywall CDROM (Chamales,
2004) allow users to boot a fully functional honeypot ecosystem requiring only basic
network configuration. Signature-based security controls need only be customised for the
network on which they are deployed. According to Huang, Jasper, and Wicks (1999)
certain signatures may need to be disabled or modified on intrusion detection systems
to minimise the occurrence of false positives, while firewalls may require a ruleset to be
written for the specific network that they are deployed on (Chapman and Zwicky, 1995).
Antivirus systems may also require an updated signature file to be effective, which is often
an additional service available from the majority of antivirus vendors for a fee (Gashi,
Stankovic, Leita, and Thonnard, 2009).

13

2.6 Disadvantages of Honeypot Deployments

A honeypot relies on its ability to convince a potential attacker that it is a legitimate sys-
tem or network or that it contains valuable information. This deception becomes a critical
factor and can become a disadvantage of the honeypot. If an attacker is able to learn (or
suspect) that a certain system is a honeypot, he or she could use the system against the
network that he or she wants to attack. Krawetz (2004) shows that anti-honeypot tech-
nologies exist, and that there are already ways to fingerprint systems running Honeyd. If
an attacker is able to identify that he or she is talking to a honeypot, they could input
incorrectly crafted information to misdirect those analysing the honeypot data. Krawetz
identifies using machines that were compromised earlier to launch attacks, which would
obfuscate the real location of attacks. Research has also been conducted by Zou and
Cunningham (2006) around botnets that are honeypot aware, and that will not deploy
their final payload to a machine that is identified as a honeypot. While this does not
directly harm the network, it does negate the potential value that a honeypot can derive.

As mentioned in section 2.5 (Advantages of Honeypot Deployments), honeypots are re-
silient to network-level denial of service attacks because they are not designed to pass
traffic. While this is true, they are vulnerable to analysis manipulation or back-office
denial of service attacks. If an attacker has identified a system as a honeypot that collects
malware payloads, which are presumably stored for later analysis, he or she could auto-
matically flood the honeypot with thousands of mutating malware. This will put pressure
on the back-office malware analysis, which corrupts any legitimate or viable threats that
the honeypot may have recorded (Prasad, Reddy, and Karthik, 2012).

2.7 Liability and Ethical Concerns

Honeypots do introduce the potential for liability to the owner if not properly constructed.
Since a honeypot is a vulnerable system, it is possible for an attacker to take control of
it and start to use it as a stage machine to launch further attacks on external networks,
particularly if the honeypot is able to communicate to the greater internet. In such
a scenario the honeypot owner might be liable for the damage caused by the malware

14

that has infected the honeypot, according to Warren and Hutchinson (2007). It is for
this reason that Provos (2003) outlined a mitigation architecture that would prevent a
honeypot from communicating outside of its network. Unfortunately, some botnet variants
have started to use this limitation as a way of preventing honeypots from capturing a copy
of the botnet payload. Zou and Cunningham (2006) discuss a form of botnet that uses
an external verification module to check whether a system is a honeypot or not. Before
sending the final payload, the system is instructed to connect to a listening sensor that
reports back to the botnet if the system successfully establishes the connection, at which
point the botnet will send the final payload. The logic is that if a honeypot is being
targeted, it would be unable to connect to a remote server, and the botnet would then
not send (and thereby expose) the final payload. However, a honeynet could be configured
to allow the honeypot external access for a short period of time after a connection, so as
not to diminish the honeypot’s ability to gather this class of botnet malware, but doing
so would open the honeypot up to potential liability.

In the paper by Warren and Hutchinson (2007), the potential ethical concerns of using
deception is also explored, mostly around the concept of whether deception is equitable
to entrapment. Entrapment is defined by Williams (1957) as “a defense to a criminal act
when a person is incited, induced, inveigled, or lured into the commision of a crime not
contemplated by him, for the purpose of prosecuting him, by a law enforcement officer
or his agent” which is very similar to how a honeypot presents itself. It is unlikely that
the purpose of deploying a honeypot is to prosecute someone, but because honeypots are
traditionally presented as extremely vulnerable targets, it could be viewed as unrealistic
and that it amounts to luring an attacker. Some, such as Scottberg, Yurcik, and Doss
(2002) argue that the information that is gathered by honeypots is invaluable because
of the honeypots’ ability to collect previously unknown samples of malware and attack
techniques, and thus should be used regardless of the above concerns.

2.8 Security Models

Throughout this section, a distinction has been made between those security controls
that use signature databases to detect known malicious activities, and those that occupy
unused internet resources. This creates the opportunity to group these different controls

15

under separate security models, which allows for some degree of generalisation when
dealing with a control in a certain security model. Grouping the controls into broader
models also allows for a comparison based on a set of common criteria, as long as the
models share a similar workflow. A comparison would highlight the specific nuances
between the controls and the models on which they are derived.

2.8.1 Decision through Detection (DtD)

As mentioned earlier, antivirus, firewalls, IDS and email filters all implement their form
of security through the use of snippets of known malicious code. This process of decision-
making can be referred to as Decision through Detection (DtD), because it requires the
information security control to base its decision on the behaviour of the information flow
that it is presented. If the behaviour matches a schematic that is seen as being malicious,
the security control is triggered. Triggering, in this case, relates to how the control takes
action based on what it discovers.

Thus, there are two distinct phases to the DtD security model: a discovery phase (where
the detection takes place) and the action phase (where, based on the detection of the
previous phase, a decision is taken and appropriate action is implemented). A security
control that is governed by the DtD model attempts to fulfil the discovery phase by
matching information that it is presented with against a list of known malicious artifacts,
such as an antivirus signature database or a firewall rule set (Cohen, 1989). The action
phase of the DtD security model pivots off the findings of the discovery phase, and it is
in this second phase that the control is given the opportunity to intervene on the flow
of information based on how malicious the detection is (Oberheide et al., 2008). The
key here is that the discovery phase feeds the action phase because the actions that a
DtD security control can take are all dependent on an accurate detection in the Discovery
phase.

2.8.2 Decision through Presence (DtP)

In contrast to the DtD security model, a honeypot provides its improved security posture
by occupying information systems that have no productive business use. Using the same

16

two-phase approach as detailed in the DtD model, a honeypot achieves the discovery
phase simply by waiting for any interaction on the unproductive information space that
it is occupying. According to Spitzner (2002); Provos (2003) anything that communicates
with it is automatically suspicious, regardless of the behavioural traits of the interaction
as nothing of business consequence should be communicating with the honeypot. In
the following action phase, the honeypot provides the captured information for further
analysis. This can take the form of malware binary analysis or profiling the type of attacks
that an attacker has used. By not needing to take into consideration the behaviour of
the analysed data flows, honeypots use a different decision system based on the presence
of information and not the behaviour. Decision through Presence (DtP) is unique to
honeypots by virtue of its links to the surrounding information resources.

2.9 Summary

Honeypots have proven themselves as a novel security control mostly through their ability
to further research initiatives. While some honeypots are more aggressive than others,
they generally adhere to one common principle: occupying unused space for reasons that
are not productive in terms of business functionality. This is in contrast to antivirus, IPS
and other signature-based security controls which traditionally inspect data for known
malicious patterns. A proposed security model was devised for the differing groups of
security controls, models which outline the advantages and disadvantage of the security
controls. The next chapter will further explore these security models, particularly the
constructing and costing of each of the models, and a potential method of combining
parts of the models into a hybrid model.

17

3 A Hybrid Security Model

The way in which honeypots implement their flavour of security is unique but research
expensive. This chapter identifies the specific costs that are required to build a successful
honeypot and how that compares to antivirus and firewall technologies. Through this,
a discovery is made that would allow for the construction of a honeypot that is still
functional but without the high research cost. The deployment was named Amber because
it resembles a honeypot, but is less supple. The rest of the chapter is outlined as follows:

Section 3.1 provides an in-depth look at the pieces that are used to build the two different
security models and offers a formula that estimates the pricing of each phase and model.

Section 3.2 introduces the idea of a hybrid security model and a conceptual overview of
how a potential technical solution could be built.

Section 3.3 offers a detailed design specification and a technical explanation of the pieces
that are needed to build the core Amber system as well as the ancillary systems.

Section 3.4 analyses a proposed method of increasing the functionality of Amber by adding
additional distributed nodes.

Section 3.5 serves as a summary for the chapter.

3.1 Decision through Detection and Decision through Presence

Chapter 2 introduced the concept of two security models which cover signature-driven
security controls, such as antivirus and IDS/IPS, as well as presence-driven honeypots.
While different, the security modes so share a common structure in that they are made
up of two phases, a Discovery phase and an Action phase.

3.1.1 Discovery Phase

The basic principle of this research is to construct a system that is able to combine the
most useful pieces of the two security models, namely: Decision through Detection (DtD),

18

and Decision through Presence (DtP). While the drawbacks of antivirus and firewall’s
DtD security model have been mentioned previously in chapter 1 (Cohen, 1989), their
advantages have outweighed their disadvantages, which is testament to their success over
the years as shown by antivirus vendors such as McAfee (Gallagher, 2010).

While it does require a great deal of human capital and infrastructure to build signatures,
pattern files and a detection engine to run them (Dickinson, 2005), the model has the
advantage of scaling very well as more nodes are added. Any work or investment that is
done on one of the nodes can also be applied to another similar nodes, thereby reducing the
total cost of research as more nodes are added. The only cost associated with an increase
in nodes is with regards to the cost of delivery. This incorporates the cost to deliver the
signature, or threat intelligence to the node, which is used to drive the detection. This
has become relatively small with the cost and speed of data transfer over the internet as
noted by Ma et al. (2009). Therefore the cost of detection is the total cost of research
that was required to generate a signature file that can be passed onto a node using the
DtD security model to detect threats. Captured in the total research cost is the human
and capital investment of identifying new threats, analysing them, building a way for the
security control to detect the threat and applying measures of quality control. Formula
3.1, 3.2, 3.3 and 3.4 express both phases of the DtD and DtP security models.

Cost : Detect = (TCoR/n) + (DC ⇤ n) (3.1)

Where:
TCoR is Total Cost of Research
n is the number of nodes
DC is the cost of distribution

As Formula 3.1 shows, the Cost of Detection for a security control which uses the DtD
security model is the Total Cost of Research (TCoR) divided by the amount of nodes that
the research is aiming to cover. Added to this is the cost of distributing the detection
research to each individual node or security control.

This cost can become large as more security controls are added to what the research is
attempting to cover, or if a certain degree of critical mass is required for the product
to be useful. Antivirus, for example, is only effective if the signature file covers enough
malware to offer a workstation or desktop that has the security control installed a high

19

probability of not being infected. The amount of work that is required to fulfil this is
significant G-Data, a European antivirus vendor, reported that 1 017 208 new malware
programs had been captured and incorporated into their signature file by the first half
of 2010 (Willems, 2010). Supporting this scale of work is expensive in terms of human
capital alone, as security firm McAfee’s Annual Report for 2010 stated that the company
employed in excess of 6 900 people that past year (McAfee, 2010).

In order for a detection-based security control to gain critical mass in terms of costs, the
amount of nodes (n) that rely on the research to fulfil their function needs to be increased.
Increasing the nodes amortises the Total Cost of Research over each node, reducing the
cost of each node. It is this scaling that has facilitated the commoditization of DtD
products, and is the reason for their commercial success (Gallagher, 2010), but it is also a
limitation on the kind of security control that can be deployed using the DtD mode. The
large expense of research can be a barrier to implementing a security control based on
this model if the amount of nodes that would use the research is not sufficient to justify
the Total Cost of Research. Distributing the cost of research amongst all the users of
the DtD security model also means that each individual node receives a certain degree of
improvement to its security posture, without having to assign research and development
resources to it.

In contrast to this, systems that make use of the DtP security model have a research
cost of zero, because the evaluation is simply that of existence, which doesn’t require a
complex detection signature.

Cost : Presence = if(I) (3.2)

Where:
I is Information

As Formula 3.2 shows, the costs of Presence is defined as if there is information (I) present
on a predetermined medium of communication. Unlike DtD’s Detection cost, there is no
research cost tied to find the presence of information, to the point where the Cost of
Presence is near zero. This is true as long as the security control that is implementing
the DtP model is the only system that is occupying an accessible information technology
asset. If the security control is the only system using an information asset, there is no need

20

to try and detect what is a productive communication and what is possibly malicious.
Presence becomes a boolean measurement, in that presence is either present or absence.

An example would be a file server that hosts documents on a network that is frequently
accessed by a business user for legitimate purposes, and on which there is a remote code
vulnerability in the file sharing protocol that causes a buffer overflow. The buffer overflow
is triggered if an attacker sends a specifically crafted query to the file server. To prevent
this from happening, a host-based intrusion detection system has been installed on the
server in the form of an agent. The agent monitors all the queries that come to the file
server, and attempts to match them to a list of known malicious queries. The security
control is cohabitating the information asset (the IP address of the file server) with a
productive asset (the file server itself) and the security control needs to detect what of
the information that is being sent to the file server is malicious and what is legitimate.
If the host intrusion detection system was installed on a system that had no productive
use (such as the file server) then it would not need to discern between productive and
possible malicious traffic because none of the traffic would be to a productive asset. In this
example the cost of detecting malicious traffic is near zero because the detection criteria
is whether there is any traffic. While the cost of configuring presence is zero, deploying
a security control based on the DtP model requires the control to exist in isolation from
other productive information technology resources - a contrast to that of detection-based
systems.

As far as the Discovery phase goes, controls based on the DtP security model are less
costly compared to security controls based on the the DtD security model, because there
is no research cost involved with deploying a DtP system.

3.1.2 Action Phase

DtP loses its cost advantage in the second phase, named the Action phase. This is because
the associated Discovery phase is based only on whether something has a presence, and
not the nature of that presence. It is unknown at this stage, in a DtP model, if the
information that is being seen is benign or malicious. This is in contrast to the DtD
model which has the ability to define how malicious or benign the information is that is

21

being presented to it in the Discovery phase. DtD Discovery is based on known malicious
code which is discovered through prior research. DtP security controls do not have that
level of information in the Discovery phase, so the burden then falls on the Action phase
to determine how to proceed with the data.

In the case of honeypots, the system owner would deploy the honeypot to gather informa-
tion on possible new attacks, and use it as a research basis to develop a counter-attack or
to modify existing defences (Bernardo, João, Anderson, Nascimento, Amaral, and Timó-
teo de Sousa Júnior, 2011). The value of this kind of action is that the output is more
significant to the organisation housing the honeypot because it is an information stream
that is actively targeting their systems, instead of relying on what threat intelligence
has been pushed to the organisation via antivirus signature files and intrusion prevention
system signature updates. Threat intelligence that is gathered from the honeypots re-
lates directly to possible attacks that are actively targeting the organisation, because the
information was collected on the organization’s network.

It can be argued that the information gathered in this way is of a higher quality be-
cause its relation to the organisation is much more direct compared to a signature that
was generated for multiple environments. But by reducing the amount of parties that
can consume the threat intelligence, the total cost of generating that threat intelligence
increases, because there are less parties over which the total costs can be divided. The
result is a DtP cost equation that can be very costly.

Cost : Action = (I ⇤ threshold) ⇤RCperI ⇤ n (3.3)

Where:
I is the amount of incidents collected
threshold is the average incident analysis rate
RCperI is the research cost per incident
n is the number of nodes

Research by Huffaker, Plummer, Moore, and Claffy (2002); Yegneswaran, Barford, and
Ullrich (2003) shows that a threshold needs to be decided on, which will either mark
information that needs to be researched further, or information that will be discarded as
internet noise. The threshold is a rolled-up number that equals the average amount of

22

information (I) that is marked for further research, as a percentage of the total amount
of data that the DtP security model captures. If on average, the DtP security model
passes 6% of the data that it captures for further research, then threshold number will be
expressed as 0.06. The higher the threshold the more data is passed for further research,
acting as a filter that removes information that does not impact the Action phase costing.

This number is then multiplied by how much it would cost to fully research a piece
of information that required additional investigation. This cost includes the time and
human capital expended as well as information technology assets such as workstations and
bandwidth. The resulting value is the cost of researching all potential useful information
from a single DtP security model node, which then needs to be multiplied by the number
of nodes. Multiplying by every node that is collecting data is done to reach a value that
is comparable to the total research cost expressed in the DtD model, where the ability to
scale across a near infinite amount of nodes is an intrinsic advantage.

A DtD security model’s Action phase benefits from the higher cost of the earlier Discovery
phase, because the signature that was used to detect the malicious information has already
decided on its nature. A detection against a database of known malicious activities
implies that whatever is detected, is also malicious, and the Action phase can execute
the information stream accordingly (in the case of antivirus the agent can quarantine
the file). But using centralised research does have an additional, intrinsic cost associated
with it. As certain requirements need to be generalised for the signature to be significant
to as many nodes as possible, consumers of centralised research pay an additional fee
for the lack of specialisation. This fee materialises as an increased rate of false positives
(FPRate), and is levied on each deployed node (n). The cost associated with FPRate
is that of repairing any damage done by signatures that take action against legitimate
traffic, such as retrieving quarantined information or restoring from backups.

Cost : Action = n ⇤ FPRate (3.4)

Where:
FPRate is the false positive rate
n is the amount of nodes

The only cost that is linked to DtD Action phase is the cost of correcting for false positives,

23

for all nodes.

3.1.3 Costing Example of DtD Security Model

Extending the DtD equation to a security control like antivirus highlights the ease at
which security controls that are designed with this security model scale. Assume that it
takes an analyst on average four hours to fully research a potential threat and produce a
signature that can detect it, and that the average analyst has a monthly cost to company
of R40 000 per month (ITweb, 2013) or an hourly cost to company of R227. If 200 threats
need to be analysed everyday, a small amount compared to the 1 017 208 examples found
in the first half of 2010 by G-Data (Willems, 2010), then the total cost to research those
threats would be R181 600. Assuming that a medium sized organisation has 1 000 devices
on the network, and applying that to the DtD Discovery costing Formula 3.1, we see the
cost benefit of scaling research.

Cost : Detect = (TCoR/n) + (DC ⇤ n)

= 181 600/n + (DC * n) [TCoR = 181 600]

= 181 600/n + (0 * n) [Assume DC = 0]

= 181 600 / 1 000 [Assume n=1000]

= 181.6

If the research is distributed to 1 node, the Cost of Discovery is R181 600, but if the
research is distributed to 1 000 nodes then the Cost of Discovery per node is R181.60.

To complete the total cost of the security model, the Action phase also needs to be included
as per Formula 3.4. The Action phase has no cost that is linked to the research cost or
the number of nodes that is included, but by increasing the amount of nodes that the
research can cover, the research needs to be made more generic so that it is still relevant
to a wider group of nodes. By relaxing the specific criteria of the research, the probability
of a false positive occurring within the control is increased. It is assumed then that the
false positive rate is optimised in terms of the business owning the security control, and
set to a point where the maximum amount of nodes can be attached to the research. A
false positive is a cost that must be borne by the vendor in terms of the security control’s
effective coverage and the market sentiment around any failings in that coverage. Due

24

to this it is assumed that the business will decide on how many nodes can be attached
without impacting the business’ continuity, meaning that the Cost of Action for a DtD
model sets a theoretical maximum amount of nodes that can be attached to a piece of
research. As long as the amount of nodes is below this level, the Cost of Action is a
constant.

Cost : Action = n ⇤ FPRate

= Optimised [Assume FPRate is optimised as described ealier and is a constant]

The DtD equation set shows that the full extent of the cost associated with a DtD security
model is applied in the Discovery phase.

3.1.4 Costing Example of DtP Security Model

If we compare the above cost to the DtP equation as based on a honeypot, the differences
in phase costing are apparent, as well as the scaling limitations of the traditional honeypot.
As Formula 3.2 shows there is no cost associated with the Discovery phase. The honeypot
is also already using unproductive information assets, which have no usage cost, and the
cost of listening for anything without complex detection tools is also zero.

Cost : Presence = if(i)

= 0 [Assume 0 as no complex detection is needed]

The DtP Discovery action shows that there is no cost related to completing this phase
and that there are no limitations on scaling. This changes severely when the model is
completed by adding the Action phase costing, as per Formula 3.3. If we assume that a
single node is able to log 200 incidents per day, and on average 1% of those incidents are
analysed. Assume that it takes an analyst on average four hours to analyse each incident
and that the average analyst has a monthly cost to company of R40 000 per month or an
hourly cost to company of R227. Finally it is assumed that there are four nodes deployed.

The calculation shows that in order to action intelligence that is gathered by a honeypot
in the Discovery phase, R7 264 needs to be spent per day. The cost is directly linked to

25

Cost : Action = (I ⇤ threshold) ⇤RCperI ⇤ n

= (200 * threshold) * RCperI * n [200 incidents logged]

= (200 * 0.01) * RCperI * n [1% of incidents are analysed]

= (200 * 0.01) * (227*4) * n [R2790 per hour, 4 hours needed]

= (200 * 0.01) * (227*4) * 4 [4 nodes deployed]

= 2 * 908 * 4
= 1816 * 4
= 7264

the number of nodes that are added (each node adds another R1 816 to the daily total
cost) meaning that there is no opportunity for economies of scale by adding more nodes.
The diference between the two models can be seen in Figure 3.1.

DtP then enjoys an economical Discovery phase, but is penalised in the Action phase.

3.1.5 Model and Phase Summary

The above formulas and examples show that both security models have competitive ad-
vantages, defined in terms of cost, in different phases. The DtD security model has a
cost advantage in the Action phase because all of the work has already been done in the
earlier Discovery phase. The Action phase simply processes the decisions that the Discov-
ery phase has already made. DtP is superior in the Discovery phase due to its simplistic
criteria - only relying on the presence of information to pass it to the DtP Action phase.

Both DtP and DtD security models aim to improve the security of the segment that
they protect, but manage to do so using two different methods with different competitive
advantages (as measured by cost). It therefore stands to reason that a security model
that followed the rules of each model’s cost-advantage phase, and still managed to improve
security, could be considered a more efficient security model, when compared to the DtP
and DtD models discussed previously.

To help minimise the costs it would then be preferable for a system to utilise a hybrid
security model, such as one shown in Figure 3.2, that uses the Discovery phase from the
DtP security model and the Action phase from DtD security model, where possible.

26

Figure 3.1: Daily cost comparison between DtP and DtD

3.2 Amber: a Hybrid Security Model Implementation

A technical proof of concept was devised that would aim to build a functional system that
would act in accordance of a hybrid security model, to test if a system built to satisfy
those rules would be able to function in a real world environment. Following the security
models explored previously, the hybrid system would need to employ a Discovery phase
that is similar to the DtP security model approach (because of the low cost associated
with it) but cannot use the DtP Action phase because of the prohibitive costs. Instead the
Action phase would need to mimic that of the DtD security model, where action is taken
based on the findings of the Discovery phase. Even though the DtD security model has a
cost advantage during the Action phase, it does still have an intrinsic cost associated to
it in the form of resolving incidents of false positives. Any system based on this Action
phase needs to reduce false positives to near zero if it wishes to conserve costs. Lastly, the
system would still need to improve the overall security posture of the environment that

27

Figure 3.2: The hybrid model

it is connected to, for it to be classified as a valid security control.

Taking this into consideration, The Critical Success Factors (CSF) for the technical system
would be as follows:

1. Zero-interactive system (reducing the research cost for both Discovery and Action
phase to near zero)

2. Zero false positive rate

3. Improves security posture of the environment

If these can be satisfied then the system would fulfill the requirements of being based on
a cost-effective hybrid model, and still serve as a security control. The system was given
the name Amber because while it is similar to a honeypot, the low interaction decisions
mean that it is less supple than the traditional honeypot.

3.2.1 Zero-Interaction

In order to fulfil the zero-interaction CSF, Amber needs to implement the DtP security
model’s Discovery phase, which requires the system to occupy unproductive information
space. A suitable piece of information space was needed that served productive services to
the internet, but that also had unallocated (and thus unproductive) space. A /24 subnet

28

which housed a group of web servers, each housing multiple websites was identified as
the segment to which Amber would play custodian. A web hosting subnet was chosen
due to the low likelihood of any accidental neighbouring traffic, as 80/tcp and 443/tcp
connections are mostly accessed via their DNS name and not directly through the IP
address (Cherkasova, 2000). Figure 3.3 illustrates how Amber is related to the websites
because of the close proximity of its IP address, but because websites are rarely referenced
via IP address, the chance of it being accessed by someone trying to legitimately access
the web servers is low. To maintain the zero-interaction CSF, a suitable Action phase
had to be chosen that would lock into the DtP security model’s presence-based Discovery
phase, but that did not suffer from the high research costs of its corresponding Action
phase.

Figure 3.3: Typical Amber deployment

The DtD security model Action plan was also not suitable because it relied too heavily
on research done during its own Discovery phase, which is then not available as the DtP
simple presence-based Discovery phase was utilised. But it is possible to use the core idea
of the DtD security model’s Action phase: leveraging off the work done in the previous
phase. By identifying any traits during the DtP Discovery phase, it was theorised that
the cornerstone of a presence-based Discovery phase (namely the idea that nothing should
be interacting with the system as it resides on a non-productive information space) could
be carried over into the Action phase.

29

If information entered the Amber system while it resided on a piece of non-productive in-
formation space, the information itself could be judged as also being non-productive. Fur-
thermore, the source of the non-productive interaction can be labelled as a non-productive
source because there is no reason for anything to be interacting with this system. Based on
that label, the Action phase can terminate any further interaction with the non-productive
source. This theory allows Amber to use the rapid (and resource inexpensive) Discov-
ery phase reasoning of the DtP security model in both phases, and links them together
by leveraging the theory of the DtD security model. That is to say, it creates a hybrid
security model, using the least-cost phases of the DtP and DtD security models.

3.2.2 Near Zero False Positives

The second CSF is a symptom of generalised classification criteria – a part of centralised
research. As noted by Slaughter, Harter, and Krishnan (1998), false positives prevent a
system from being automated, which increases the interaction rate. Systems that use the
DtD security model are prone to it because the detection mechanisms used during the
Discovery phase are based on a set of generalized criteria that try to suit as many nodes as
possible, which has led to scenarios where critical system files were erroneously labelled as
malicious (Keizer, 2007; Microsoft, 2010; Leyden, 2010). As more generalisations are made
regarding the detection criteria, the possibility of something being detected and flagged as
malicious also increases. As the number of inclusive nodes (the amount of nodes that are
able to subscribe to the centralised research) increases so too does the degree of required
generalisation, and with it the false positive rate. Given that the Action phase depends
heavily on the research done during the Discovery phase, actions taken in the Action
phase are also prone to false positives caused by general detection criteria.

As stated earlier, systems that use the DtP model are resilient to false positives because
the Discovery phase is tailored to look at information that enters zones that have no
productive use, and that are specific to the environment that they are attached to (Zhang
et al., 2003). It combats false positives because the information needs to be fully analysed
as part of the Action phase, meaning every context requires manual intervention. Amber
discards the confidence built by analysing every context, but because the Action is based
on the false positive resilient presence-based Discovery phase, any actions taken in the

30

Action phase would be based on information that had no productive use, making the
probability of false positive extremely uncommon. To put it another way: given that all
interactions during the DtP Discovery phase are unwarranted, it is unlikely for any action
to return as a false positive in the Action phase, i.e. as non-malicious.

3.2.3 Improves the Security Posture of the Environment

The system is still an information security system, which means that through all its zero-
interaction optimizations it still needs to improve the security posture of the environment
that it is associated with. Without satisfying this requirement, the system would be
useless. As a standalone unit, Amber is not able to take action against anything that
passes through the Action phase, because it does not use a productive internet address
space. It is also not positioned in such a way that would allow it to take action on behalf
of a productive asset, such as an inline configuration. As Amber is not attached inline or
in front of, and does not share internet space with any productive entity, any action that
Amber takes directly on the information that it has seen, would only improve the security
posture of the unproductive internet space on which Amber is residing. To overcome this
Amber would need to rely on an external device that is situated in front of a productive
portion of the segment, and that could take action on Amber’s behalf. Amber would
be able to log the source IP addresses of systems that targeted it and pass those IPs
in the form of a threat stream to the network enforcer (such as a firewall). The firewall
would then be able to drop packets that originated from the source IP addresses, and that
attempted to connect to any other systems on the segment. This action would reduce
the quantity of potentially malicious traffic entering a segment, and thereby increase the
security posture of the environment that the firewall in conjunction with Amber was
protecting. The IDS SNORT uses a similar approach as it also does not have the native
ability to intervene against an information stream (Koziol, 2003).

3.3 Technical Design

Amber was built on top of an established operating system to save time and resources, and
utilised that system’s available network stack and commonly available packages wherever

31

possible. A combination of Perl, Python and Bash scripts were used to code the parts of
Amber depending on where the strength and development speed of each stage lay. The
project was broken down into its functional pieces, and developed as a collection of those
pieces instead of as one large program, illustrated in Figure 3.4. This allowed for rapid
development by prototyping each function, and then testing it in isolation before building
the next piece of the system. The functions were dictated by what was needed to achieve
the various goals within each of the phases of the hybrid model, namely Discovery and
Action.

The Discovery phase requires some way to discover information that is trying to interact
with Amber, and is able to record the source of the connecting entity, and satisfy the
entity’s presence. It also needs to have a way to ensure that the connecting host’s presence
is not being spoofed, as to force Amber to think that a benign host is trying to access
it, and subsequently force Amber to take action against it. The Action phase requires a
mechanism to send the source IP addresses to an upstream network enforcer, who can
take action on Amber’s behalf. Lastly, because Amber is designed to be unmanaged, there
was a need for a module that would ensure that the different components of Amber were
functioning correctly, and could restart them if that was not the case. This module was
built as a watchdog script, and would check the integrety of the Amber components

Figure 3.4: Hybrid security model components

32

3.3.1 Hardware

Initially Amber was deployed as a virtual machine on a Dell R210 running VMware ESXi
5.0. The decision to use virtual machines was taken because the hardware specification of
the Dell R210 that was on hand (Xeon quadcore processor and 8 gigabyte of RAM and 4
gigabit ethernet ports of which 3 ports were used) was well beyond what was needed for
Amber to function as a standalone deployment. Amber at one point successfully deployed
on a virtual server that had a single core processor and 256Mb of RAM. The hypervisor
also provided a way to employ the excess resources on other projects or ancillary systems.

3.3.2 Discovery Function: Listening Daemon

In order for Amber to adhere to a Discovery phase that is similar to that of a DtP
security model, it would need the ability to open an arbitrary amount of IP ports and
accept connections to those ports. The connection’s source IP address then needs to be
recorded for use in the Action phase.

This introduced a problem into Amber that made it vulnerable to spoofing attacks, which
were originally discovered by Heberlein and Bishop (1996) and later expanded on by
Templeton and Levitt (2003). A spoofing attack is executed when an attacker changes
the source IP address of a crafted packet, effectively masking or spoofing the origin of
the packet (Felten, Balfanz, Dean, and Wallach, 1997; Ferguson, 2000; Tanase, 2003). If
an attacker knew the listening IP address of Amber, they could craft a packet with a
source IP address that was not their own and send it to Amber. Amber would respond
by classifying the attacker-chosen source IP address as a threat and streaming it to the
network enforcers. This is similar to attacks highlighted by Hunker, Hutchinson, and
Margulies (2008), and would allow an attacker to selectively deny a victim services that
were protected by a network enforcer that subscribed to an Amber node’s threat stream.

The first step in addressing possible abuse of this was to limit the scope of what Amber
listened for to only TCP/IP instead of other IP protocols such as ICMP, UDP and GRE
because TCP/IP, as noted by Stevens and Wright (1995) has built in sessioning, which
helps defend against spoofing. The Linux kernel firewall, netfilter, is a stateful firewall

33

meaning it is able to keep track of connections as they interact with a system (Coss,
Majette, and Sharp, 2000). It was used by Amber as a way to detect any incoming
communications that successfully established a connection via the TCP/IP three-way
handshake or the SYN, SYN-ACK, ACK process (Postel, 2003). If an incoming connection
managed to establish a three-way handshake it would then indicate that the source IP
address provided is the actual IP address from where the connection originated. While
checking for the three-way TCP/IP handshake is a valid way to mark a connection as
being established and not spoofed, an attacker would still be able to fool this method by
guessing the correct SYN-ACK sequence number, as proposed by Bernstein (1997) in his
paper on SYN Cookies.

Since then, Linux has by default enabled the proposed remedy for this, which are SYN
cookies. But, in a paper by Kaminsky (2011), the author revisited the solution and
noted that they are susceptible to a brute force attack due to the increase in possible
internet throughput. It would take approximately eight million packets to successfully
brute force a SYN cookie-protected system, which could take less than fifteen minutes on
non-specialised hardware (assuming a packet rate of 100,000 packets per second).

More recently Lell (2013) discovered that the Linux kernel is in actual fact accepting 32
valid combinations for a single SYN cookie, due to the way in which the kernel encodes
a counter and the maximum message size (MMS) value into the initial sequence number
(ISN). This means that the work factor required to brute force a valid SYN cookie is
effectively reduced by a factor of 32. Lell goes on to show that with a gigabit network
connection over 300 000 packets per second can be generated, which would exhaust the
amount of time needed to guess a valid, and now weakened, SYN cookie to eight minutes.

To address this, Amber incorporates the netfilter packet limit module, which limits the
amount of packets entering the system (Welte, 2000). By instituting a limit of 800 ACK
packets per second an attacker would have to spend 50 hours to exhaustively brute force
all possible combinations and successfully guess a SYN Cookie. To further defend against
brute forcing SYN Cookies, Amber’s connection timeout was set to 600 seconds. An
attacker could effectively launch a Denial of Service (DoS) attack against Amber because
of the low packet per second limit, but because Amber is not attached to any productive
internet space, a DoS attack directly against it would not harm the segment. In fact it

34

could be argued that it is slightly enhancing the network’s security because a would-be
attack is spending time targeting Amber instead of a productive asset.

Having established the constraints of what Amber would listen for, a network daemon
was written in Perl and deployed on a virtual machine running Ubuntu 12.04 x64. The
Perl script would spawn a set of common TCP/IP ports on the listening interface and
record the source IP address of those connections.

The following three TCP/IP ports were chosen, as shown in Table 3.1

Table 3.1: Ports that Amber exposes
Port Number Description
135 MS Remote Call Procedure
445 MS Active Directory
3389 MS Remote Desktop Protocol

TCP/IP port 445 and port 135 were chosen because they have been widely used by
malware such as worms (Shin and Gu, 2010; Zhang et al., 2010; Irwin, 2013a). The
service running on TCP/IP port 3389, Microsoft Remote Desktop, was chosen because a
remote code execution vulnerability had recently been discovered by Auriemma (2012);
Microsoft (2012).

3.3.3 Action Phase: Send IP to Enforcer

Once the listening daemon has validated a source IP address, the Discovery phase ends
and the Action phase starts. In order to implement the findings of the Discovery phase
the IP address needs to be recorded and passed on to a network enforcer. This resulted
in another constraint on the system, because it was being deployed in an environment
that was ‘live’ on the internet, and used to service client requests. This meant that the
environment could be seen as a Production environment, which meant that any action
that could possibly cause an interruption to clients trying to access their system, could
not be followed through. This constraint meant that Amber was unable to take action
against IP addresses in the way previously thought (passing the IP to a network enforcer
where it could be denied further access to the network). Testing could also not be done

35

in a test environment because without access to a segment that was actively interacting
with the internet, would not reflect a real world scenario.

A work around was needed that would simulate a complete interaction with Amber and
that could measure the effect that blocking the source IP from the network would have,
without physically interacting with a network enforcer. To address this a proxy test was
engineered that would cause no interruption to the production network but would still be
able to validate Amber’s ability to improve the security posture of the network segment.
This would rely on a packet capturing device that would be set up at the perimeter of
the network segment that Amber was housed in, that would normally be behind the
proposed network enforcer, and would capture all the network traffic entering the system
over a certain period of time to offline pcap files. Amber would then log all the source
IP addresses of connections that it recorded for the same time period, which could then
be compared to the full pcap traffic dumps, to check if an IP address that Amber logged
was later found trying to access another asset on the network, as per Figure 3.5.

Figure 3.5: Malicious activity verified via wiretap

If this was the case, then it could be stated that if Amber had been fully functional and
connected to a network enforcer, the logged source IP address would have been added to
a DROP rule on the network enforcer, which would have stopped it from being able to

36

interact with the other system on the network, thereby increasing the security posture of
the network segment.

The packet capturing system was deployed as another virtual machine on the VMware
ESXi 5.0 server and assigned two network interfaces. The first was connected to the man-
agement network so that it was reachable, while the second was attached to a duplicate
stream of all the traffic entering the shared web hosting network. This was accomplished
by spanning or mirroring (Phaal, 2007) the trunk port on the switch that led to the ex-
ternal facing port on the network firewall, to another port on the same switch. This port
was then connected to an open interface on the VMware ESXi 5.0 machine. The ESXi
5.0 vSwitch is able to split the different VLAN traffic that a physical interface sees, to
different virtual ports. The VLAN (McPherson and Dykes, 2001) that consisted of the
shared web hosting traffic was attached to one of the virtual ports, and to the secondary
interface on the packet capturing system. This allowed the packet capturing system the
ability to see all traffic entering and exiting the network segment, but unable to affect it
in anyway.

The packet capturing system was also built on Ubuntu 12.04 x64, and used the tcpdump
binary to capture all incoming traffic to the segment via a mirrored uplink port. A
truncated version of the packet is captured because an analysis of the complete packet
contents is not needed, since only the source and destination IP address needed to be
checked. As detailed in chapter 2, Amber and the packet capturing system, would be
active for 24 hours during which time the packet capturing system would record all the
traffic entering the segment. At the end of the 24 hour period, Amber’s daemon would
have logged all the validated source IP addresses locally in a flat file, and this list would
be exported to the packet capturing system where it would search through its packet
captures over the same time period. For each IP address logged by Amber, the packet
capturing system would check if the same IP address attempted to target another host on
the segment, an action that would not have been possible if Amber were able to stream
the source IP addresses that it captured to an upstream network enforcer.

37

3.3.4 Ancillary Systems: Packet Capturing System

The packet capturing system became an essential part of the Amber testing process be-
cause it allowed Amber to be tested on a production network with numerous websites,
but it also increased the complexity of the test suite. Complete packet captures for all of
the traffic that entered the entire segment made it possible to do offline analysis on the
traffic, but also meant that the data would need to be stored until it was analysed.

The network segment that Amber was housed in would, on average, generate 300 Gb
worth of captured pcap files on the packet capturing system over a 12 hour period, with
network traffic spiking to 30MB/s during peak usage times. This created a burden on
storage which was limited to 1TB on the packet capturing system. This meant that
the maximum amount of data that could be housed at any one time was 980 Gb, or
approximately 36 hours worth of packet captures. Storage is only half of the problem of
offline analysis, as the files still need to be analysed, which also added a great deal of time
needed to complete an analysis window. Because storage was only necessary for testing
purposes it would not be a limitation on a production instance of Amber.

Initially the command line implementation of Wireshark (a binary called tshark) was
used to analyse the pcap files (Merino, 2013). The captured packets were analysed for
all instances of a source IP address that the Amber node had logged, and would return a
list of timestamps when that IP address had also tried to access other assets on the same
network. All instances that occurred after the timestamp that Amber had originally
logged the source IP address would indicate instances that would not have occurred if
Amber had informed an upstream network enforcer of the source IP address. This total
would form an effectiveness rating for Amber; measuring how many additional connections
and potential malicious information exchanges could have been prevented after Amber had
logged that source IP address.

This method ended up being very computationally expensive. To analyse a total of 5.5
Gb of packet captures, split into eleven 500 Mb pcap files, for a single logged source IP
address, took on average 5 minutes and 4 seconds. This meant that it would take the the
offline packet capture system just under 5 hours to process a 12 hour window of traffic for 1
source IP address. The Amber node was recording between 10 and 20 source IP addresses

38

per 12 hours, which meant that it would take between 10 and 20 times what was needed
to do a single source IP address, or 50 to 100 hours, to fully analyse a 12 hour window.
While it was possible to generate results with this model, it was very unproductive and
meant that there was no room to scale the architecture. Also, if an outlier day were to
occur which caused Amber to log an exceptionally large amount of source IP address, the
day’s research would have to be discarded due to it being impractical to analyse.

In order for tshark to process a packet capture file, a filter needs to be constructed that tells
tshark what to look for in the packet capture file. For example Figure 3.6 shows a tshark
query that has been constructed to look for a single source IP address, in this example
8.8.8.8, in a pcap file ambercap.pcap. Line 1 of the tshark query sets ambercap.pcap as
the target file. Lines 2-5 list the fields that are to be extracted if the condition is met.
Line 6 sets the condition filter that needs to be matched to return a value.

Figure 3.6: Tshark command

It was discovered though that if multiple filters were linked through an OR condition,
the processing time that it took to complete the query did not increase proportionately
to the number of source IP addresses added. Therefore instead of constructing a filter to
look for a single source IP address, a filter could be constructed that linked many source
IP addresses with the OR condition. This allowed the packet capture files to only be
searched once, requesting all the IP addresses that had been logged by the node during
that capture window, as shown in Figure 3.7 lines 6-10.

Table 3.2 and Figure 3.8 display further tests that were run to determine if this held true
for n inputs, or if there came a point where this observation no longer held true. The
input filter was tested with the following sizes: 1, 5, 10, 50, 100, 500, 1 000, 2 000 and
4 000 and ran against a pcap file that was 500mb in size. The Unix time command was
used to ascertain how long it took to analyse the pcap file with each of the seven filter
sizes, as described by (Das, 2006).

39

Figure 3.7: Tshark command - multiple conditions

Table 3.2: Processing times as source arguments increase
No. of Src IPs Real Processing Time (seconds) Seconds per IP

1 9.247 9.247
5 9.205 1.841

10 9.553 0.955
50 10.860 0.217

100 13.367 0.134
500 26.523 0.053

1000 39.158 0.039
2000 63.900 0.032
4000 112.741 0.028
5000 na na

This testing does show that the processing time does increase as the number of filter
inputs increases, but not proportionately while n < 500. Increasing the number of inputs
from 1 to 500, causes the processing time to increase from 9.247 seconds to 26.523 seconds.
This is an acceptable increase in processing time since it is an increase of 2.868 times that
of 1 input, but results in 500 times the number of inputs being analysed. Doubling the
inputs from 500 to 1 000 increases processing time to 39.158 seconds, which is still an
improvement as it still takes less time to analyse each IP as shown by how many seconds
its takes to analyse each IP in Column 3. Even using 4 000 source IP addresses still
manages to perform better than 2000 IP addresses, albeit only slightly, and anything over
5 000 IP addresses causes an ‘Argument list too long’ error to be triggered in the tshark
binary. Based on this, as long as the argument list does not exceed 5 000 arguments the
processing time is efficient to stack as many filter arguments into one query as is possible.

40

Figure 3.8: Processing time per IP (500mb pcap file)

Using this method of analysing the pcap files resulted in an effective disregard for the
amount of IP addresses that needed to be analysed, because the average number of source
IP addresses that needed to be analysed was between 10 and 20.

3.3.5 Further Gains with Parallel Processing

By using a stacked query as previously described, the time to process 12 hours worth
of pcap files was not hampered by the amount of source IP addresses that were being
analysed, but it would still take close to five hours to complete an analysis. This number
was a function of the speed of the processor and, to a lesser degree, the input/output
speed of the hard drive being used. While the tshark binary was analysing a file, the core
of the CPU that it was tied to would report as being in 100% use, but the remaining cores
of the quad core Xeon E3-1235, would be standing idle. This was because tshark is not
a multithreading binary, meaning that it cannot use all available cores for a single query,
which meant that the extra cores on the E3-1235 were underutilised when a pcap file was
being analysed.

41

Because the pcap files are stored on the hard drive in 500Mb ‘chunks’ and a script is used
to iteratively analyse each of the files, it was theorised that a form of parallel computing
could be simulated by a control script. Spawning multiple queries against different pcap
files, and shuffling those queries to different processing cores, meant that more of the
available computing resources could be used to analyse the pcap warehouse. By increasing
the resources available it should be possible to cut down the total time needed to analyse
a 12 hour capture window.

The Python programming language has a parallel processing framework called pprocess,
which exposes certain tools that make it possible to implement parallel programming
within a Python script (Schiemenz and Igel, 2013). Instead of rewriting the query gener-
ator to use Python, and thereby make use of pprocess’s multi-processing capabilities, it
was decided that it would be more time efficient to rather reuse the shell scripts that had
already been coded and tested, and use pprocess as a wrapper. Because Python can also
launch shell scripts with the subprocess module, it was possible to write a Python script
that would be able to take a shell script that needed to be applied to a directory of input
files, and spawn multiple instances of the script while iterating through the input files.

Figure 3.9 shows a generic version of the script, one that could be applied to any shell
script and directory of input files.

Figure 3.9: Python wrapper for parallel data analysis

42

The variable nproc tells the pprocess framework how many instances of the shell script it
can handle in parallel, which in the above configuration is set to 4, which yielded the best
performance. The machine that was doing the packet capture analysis was equipped with
a single quad-core CPU, giving it four cores onto which it could schedule tasks without
impacting performance. Therefore, if nproc=4 it is maximised for the amount of available
processing power.

Additional testing was done on all possible values between 1 and 8 for nproc, it was
found that when nproc exceeded the number of usable cores on the hardware, no further
improvement in processing time was examined. The empirical test placed seven items,
into the analysis directory, which was made up of seven packet capture files of 500Mb
each. The first test did not use the pprocess parallel scheduling capabilities and instead
just tested the speed at which the framework would execute on a single processing unit.
This was completed in 66.294 seconds or 9.471 seconds per individual file, which is very
close to the results examined by using the script directly from the command shell.

After that the test was rerun with the nproc variable incremented and the results recorded.
As Table 3.3 and Figure 3.10 show, by adding an additional processing core into the
process, the time it takes to analyse the files is improved but not perfectly. The addition
of another processor into which data can be analysed does not halve the amount of time
needed to fully analyse the content. When moving from one to two processes the job
is completed in 60.5% of time that the single processor needed, which is close to half of
the time but not exactly. This disparity in performance gains can be attributed to the
analysis of capture files not only relying on the CPU to be completed, but also on the
hard drive. In order for tshark to start analysing data, that data needs to be read off of
the disk and parsed to the binary, but while the binary can be assigned different files on
different processing cores, the data files reside on one hard drive. Each request to read a
file adds to the single hard drives load, and while the effect is not very pronounced when
analysing two files in parallel at nproc=2, when another core is added in at nproc=3, there
is a much smaller decrease in the amount of time needed.

The total time that is needed to analyse the seven files does continue to decrease, albeit
at a slower rate at nproc=4, but when the script is configured to start assigning five
concurrent instances of tshark, the time needed starts to increase compared to what was

43

needed to nproc=4. This means that nproc=4 is the turning point resulting in a processing
time reduction of just over half, which led to an average analysis time of just under 6 hours
for a 12 hour packet capture.

Table 3.3: Identifying optimum NPROC setting
NRPOC 1 2 3 4 5 6 7 8
Items 7 7 7 7 7 7 7 7
Total Time (s) 66.29 40.11 37.13 32.20 35.31 35.08 38.95 36.29
Per file (s) 9.47 5.73 5.305 4.60 5.04 5.01 5.56 5.18
Performamce (0 is better) 100 60.50 56.01 48.57 53.27 52.92 58.76 54.75

Figure 3.10: Identifying optimum NPROC setting

3.4 Implementing Distributed Intelligence

Sudaharan, Dhammalapathi, Rai, and Wijesekera (2005) notes that a honeypot’s useful-
ness is measured by the amount of information that it collects, so increasing the amount
of information that it is able to capture would increase its usefulness. An architecture

44

that would maximise the quantity of data that can be captured should then be imple-
mented. More captured data should lead to an improvement in potential findings, as long
as the additional data can be researched at the same rate and quality as before. Amber’s
DtP-based Discovery phase needed Internet space that had no other productive use, so
increasing the amount of Amber nodes on a segment reduces the amount of usable Inter-
net space for that segment. Unfortunately, due to limited available IP address space on a
network segment this puts a limit on the number of nodes that can exist on a particular
network segment. What is more detrimental to this architecture is that each additional
Amber node also erodes the total protection that Amber grants the productive systems
on the segment, because there are simply less productive systems. While it might be
feasible to sacrifice a small amount of additional IP addresses onto which Amber nodes
can be deployed, it would depend on the value that each node adds to the cluster.

Figure 3.11: Network utility is lost for each node deployed

The architecture in Figure 3.11 is flawed because of its reliance on an increasing marginal
security added per node. It was decided that the practice of deploying additional Amber
nodes on the same segment was impractical. However, if the trade-off of productive to
unproductive internet space could be offset, then any increase in the security posture
could be seen as relatively beneficial, because it is not tied to a cost. It was also theorized
that sampling internet space that was geographically removed from the first node, would

45

yield a list of potentially malicious source IP addresses that were significantly different
for the first node’s list.

Figure 3.12: No network utility is lost for nodes deployed externally

A new architecture was ratified that would deploy additional Amber nodes on geograph-
ically distributed segments as shown in Figure 3.12. This would nullify the cost of con-
verting productive internet space on the network segment that is being protected, and
therefore any increase in security posture would be acceptable. Two additional Amber
nodes were set up on geographical areas that were separate from the initial sensor. The
original Amber node resided in South Africa, while the additional nodes were established
in the United States and Germany. The locations were chosen based on the implementa-
tion costs of renting infrastructure, and because they are located in different continents
and time zones. Dissimilar time zone and geographic location was important because it
would create a deployment that would be able to test the speed at which a possible mali-
cious source IP address was identified on different nodes. Figure 3.13 shows that while all
three nodes had different time zones, the German (zone O) and South African (zone P)
nodes were only separated by one zone, while the United States node (zone G) was eight
zones away from the German node and nine zones away from the South African node.
This would highlight if there was any difference in the data collected between time zones
based on their distance.

Initial testing of the data that was being collected by the additional nodes revealed that
there may be a limited number of correlating events between threats recorded in these
different locations. Reviewing the threat streams generated by the United States and

46

Fi
gu

re
3.

13
:

T
im

e
zo

ne
di

ffe
re

nc
es

be
tw

ee
n

di
st

rib
ut

ed
A

m
be

r
no

de
s

So
ur

ce
:

U
S

N
av

al
O

bs
er

va
to

ry
,
20

02

47

German nodes showed that none of the validated source IP addresses that were being
captured were appearing on the South African packet capturing node. A precursor hy-
pothesis was devised: is there any correlation between attacks seen between the United
States, German and South African geographical nodes? This hypothesis would act as a
sanity check to the hypothesis of using distributed nodes to increase the security posture
of a single segment. Testing the precursor hypothesis would also not require any addi-
tional resources or information because it would compare information that was already
being captured. If the precursor hypothesis was false then the distributed node hypothesis
would automatically be false, due to its reliance on a correlation between the regions to
exist.

The networks that the United States and German nodes were deployed on were commer-
cial hosting environments, which made it extremely difficult to monitor all the network
segments that the distributed Amber nodes lived on. A similar test for correlation could
be achieved though by comparing the source IP address streams generated by each node.
Each node was built on the same basic stack as Amber because their purpose was iden-
tical to the original amber, except that the captured IP addresses would be analysed
differently. A listening daemon would record any source IP address that communicated
with it, relying on the same suite of anti-spoofing technology as the original Amber node.
Once a source IP address was verified through connection sessions it was logged to a file,
and appended to the list of IP address that the netfilter firewall dropped. Each list of
verified IP addresses needed to be compared to the other nodes’ lists which meant that
a centralised system was also added to the architecture that could collect and correlate
the IP information, as per Figure 3.14. Using a centralised node would also allow all
interactions with the remote nodes to be orchestrated through one system, cutting down
on the amount of time needed to collect information from the remote nodes. This archi-
tecture also makes it possible to scale the systems to many more nodes, as it removes the
administrative work required to maintain and manage the systems.

The central node would need to be able to log into each of the remote nodes, stop the
listening daemon, transfer the verified source IP address list and log files to to its archives,
sanitise the remote node’s environment and restart the listening daemon. To accomplish
this, a trust relationship needed to be established between the central node and each of the
remote nodes, through the distribution of public-keys for secure shell login as described

48

Figure 3.14: Amber architecture with centralised Command and Control system

by Ylonen (1996). This allows the centralised node to access the remote nodes without
being prompted for user credentials.

This test only needs the source IP addresses to be stored, instead of full packet captures
as with the single node architecture. This meant that the system was also able to run
for longer periods of time without intervention. Further, because of the centralised node
the interaction could be limited to non-human interaction as the centralised node would
be used to pull and analyse the data on the node, and to reset its state. This required
the remote nodes to be built robustly enough to function with no interaction or human
intervention. Due to the modular nature of the remote nodes, it was possible to write a
watchdog script that would check the current state of the node based on what processes
were running, and correct any state that was not one of the three desired states: Listening,
Maintenance or Disabled. The watchdog would poll certain aspects of the node and collect
that data, which was compared to a matrix of possible state indicators. This allowed it
to derive the running state of the node to which it compared the desired state via a
configuration file switch and corrected, where needed, the systems out of sync. This
enabled the nodes to collect data for more than eight months without any direct human
interaction or administration.

49

3.4.1 Capturing Packets

All initial testing and pcap file processing optimisation was based on a 12 hour packet
capture window because it was thought that any longer would result in an analysis time
slot that would be too long to manage. In practice, this was not the case. Twelve-hour
capturing windows required two human interactions with the system, per day cycle. It was
not possible to automate these interactions because of the complexity involved. Actions
needed to be taken on two separate servers:

1. Starting the test which consisted of sanitising the test environment (deleting all
previous packet captures), activating the listening daemon on the Amber node and
start capturing packets on the capturing node

2. After 12 hours the window is automatically closed and the data is ready to be
analysed. The listening daemon node’s collected IP addresses need to be transferred
to the packet capturing node, and built into a single tshark query which can be run
on the packet captures that were collected. The results are then pushed into a
database as discussed in section 3.3

Assuming that the test is started at 06h00, capturing would run till 18h00 at which point
it would need to be switched over to analysis mode. This had to be a manual mode
because of the complexity in moving and formatting the data between the capturing and
analysis phases. The analysis would run for 6 hours, finishing at midnight, and at 06h00
the next day the process can be repeated. Batch process was not possible because of the
amount of hard drive space that was required to store multiple windows of captured data.
Figure 3.15 shows that when a 12 hour window is used, the system is able to capture
12 hours worth of data every 24 hours, or 24 hours worth of data every 48 hours. This
requires two interactions, one at 06h00 and another at 18h00, or four interactions for 48
hours.

Moving to a 24 hour capture window (Figure 3.16) doesn’t increase the amount of cap-
turing time when normalised and compared to the 12 hour window, but it does decrease
the amount of interactions to two per 48 hours. It also synchronises all interactions to

50

Figure 3.15: 12 hour capture window

occur at the same time every day. Assuming that the test is started at 06h00, capturing
would run till 06h00 the following day, at which point it would need to be switched over
to analysis mode, which would run for 12 hours and end at 18h00. The next day at 06h00
the process can be repeated.

Figure 3.16: 24 hour capture window

The 48 hour cycle meant that the data that was captured would not be biased towards
a certain time of day because capturing took place for an entire day and night cycle.
Being able to schedule all interaction at the same time every day also reduced the amount
of administrative overhead of monitoring the project. For these reasons the 48 hour
capturing period was chosen.

51

3.4.2 Time Synchronization

A common and accurate time-keeping service became another integral part of the testing
system, because packet arrival time would be compared between two systems (Kent and
Souppaya, 2006; Tierney, Crowley, Gunter, Lee, and Thompson, 2001). If there was a
discrepancy in the time between the system that was capturing the segment PCAP files
and the Amber node, then the integrity of any derived conclusions would be questionable.
To address this, a local network time protocol (NTP) server was used to synchronize the
system time of all the systems that were part of the testing environment (Ylonen, 1996).
The built-in UNIX NTPD service was used to automatically probe the common time
server and alter the local time if it was not synchronized.

3.5 Summary

This chapter introduces the concept of a Discovery and Action phase as common to both
detection-based and presence-based security models. Costing methods were produced that
served as the backbone for selecting certain characteristics of the hybrid security model,
combining the lowest cost phases of each of the two models. Once the model was defined,
a technical design was proposed that would meet all the requirements of the hybrid model,
which became the Amber system. The system was characterised by a listening daemon
and a method of streaming IP addresses, as well as certain ancillary systems that aided
Amber. The idea of expanding on the Amber deployment by increasing the number of
nodes was explored and it was found that potential gains could be made if more nodes
were deployed in different countries opposed to adding more nodes on the same network
segment. The next chapter focuses on what findings were discovered when the data that
the Amber nodes collected was analysed, as well as certain ways in which an Amber
deployment could be used to aid traditional security controls.

52

4 Data Analysis

Introduction

The single and distributed Amber nodes collected a significant amount of data during
the time that they were active. By looking at the data that was collected by the nodes,
certain discoveries were made that produced three ways in which security controls could
be improved by analysing the data collected by an Amber node on a network. The rest
of the chapter is outlined as follows:

Section 4.1 investigates the testing process, and how it was structured.

Section 4.2 presents the data that the local Amber nodes collected.

Section 4.3 extends on Section 4.2 by adding data from two other nodes that were located
in different regions. This data is profiled based on top 10 sources and the most prevalent
TCP/IP ports used.

Section 4.4 takes the collected source IP address and maps them visually on a world map
to show which remote locations were prone to attack, and which were not.

Section 4.5 focuses on the data and constructs three methods in which signature based
security controls can be improved by transforming the data captured by a deployed Amber
node.

Section 4.6 describes possible deployment strategies for an Amber system, covering a
simple and complex network, through an extendable architecture.

Section 4.7 serves as a summary for the chapter.

4.1 Testing Process

Testing was broken down into two parts: single node and multiple node tests. This split
exists because the actual testing for single and multiple nodes needed to be different,

53

due to differences in control over the environments. The single node was deployed on a
network to which physical access was granted, meaning that out-of-band testing, wiretaps
and high-speed backbone access was provided. This was not the case for the multiple node
tests because the geographically distributed nodes were rented from Virtual Private Server
(VPS) providers. This meant that shell access and at best an administrative dashboard
was made available to the infrastructure during testing.

Choosing where the geographically distributed nodes would be placed (the two nodes
outside of South Africa) was decided primarily based on cost, but was also related to
hosting concentration. Low cost hosting attracts more demand for hosting, which would
make the regions with low cost hosting more representative than fringe hosting providers.
LowEndBox2 is a website that collects VPS specials and publishes them, and it was used
to obtain a node in the United States and Germany for under $2.00 per month each. These
ultra-cheap nodes are normally limited in terms of CPU, RAM and available hard drive
space, but because the Amber node deployment has a small footprint, these limitations
did not influence the nodes ability to collect data.

The single node used a method of checking collected IP addresses against the rest of the
network traffic with a physical wiretap, but since this level of control was not available on
the VPS nodes, a substitute test needed to be devised. This took the form of a correlation
test between the three nodes to establish linkage with regard to the IP addresses that they
captured.

4.2 Test Results: Single Node with Segment Validation

The 24 hour long capturing test was run a total of ten times over a six-month period
from August 2012 to January 2013. Amber’s listening daemon would collect the following
information from each source IP address that attempted to connect to it: the source IP
address, the destination port and a timestamp of when the connection occurred. The
data would be stored in a log file as shown in Figure 4.1.

At the end of the 24 hour capturing window, the log file was moved to the packet capturing
node where it can be compared to the data that was captured for the entire network

2
http://www.lowendbox.com

54

Figure 4.1: Amber connection request log file

Figure 4.2: Amber transaction information log file

segment. Each of the source IPs that the listening daemon recorded would be strung
together into a tshark query. This tool would then extract all instances where that IP
address also attempted to connect to another system on the segment during the same
period of time that Amber and the capturing system were active. This produced a data
set that contained the timestamp, source IP address, source port, destination IP address
and destination port. An extract of the resulting log file is given in Figure 4.2.

A script would then compare the timestamps from the combined log file against that
of the IP transactions that the packet capturing node recorded, discarding those results
that occurred before the Amber node logged an IP address. Figure 4.3 visualises this
workflow. This would result in a report that only contains the source IP addresses that
first attempted to access Amber, and then went on to also attempt to access other systems
on the segment. IP addresses that appeared in the processed list would prove that Amber
was able to improve the security posture of the segment, if it was attached to a network
enforcer. In an environment where a network enforcer was attached to Amber, an IP that
was recorded by Amber would not have been able to make further connections into the
segment.

55

Figure 4.3: Network IP filtering according to Amber

Table 4.1: Node connection statistics for opened ports
Port Occurrences Percentage
135/tcp 50 8.45%
445/tcp 199 33.61%
3389/tcp 343 57.94%

Each source IP address that Amber validated and passed onto the packet sniffer was
identified, on average, as accessing the rest of the segment 6.89 times. This number
is calculated by counting the number of occurrences that an IP address is found to have
connected to another host on the network, after Amber recorded a connection from that IP
address. These numbers were then averaged to produce the 6.98 times result. Therefore,
Amber was able to improve the segment security posture, as measured by the method
described above. Of the ports that the listening daemon opened, the most popular was
port 3389/tcp, or Microsoft Terminal Services, which saw 1.7 times more traffic than the
next largest destination port as per Table 4.1.

Port 445/tcp has been associated with one of the most reliably exploitable vulnerabilities
in the Windows operating system, MS08-067 (Micosoft, 2008), which was used by the
Conficker worm outbreak in 2008, as explored by Fitzgibbon and Wood (2009). The
Conficker worm (specifically the Conficker C variant) was a computer virus outbreak that
was first discovered in November of 2008, and is known for the speed and veracity at which
hosts were infected. One of the main components that Conficker C used to propagate was

56

the MS08-067 vulnerability because once a particular machine was infected, it tried to
infect any adjacent machines. According to Porras, Saidi, and Yegneswaran (2009) it
did this by scanning for hosts that were listening on TCP port 445. This has created a
substantial increase in the volume of noise on the internet as detailed by Irwin (2013a,b)
in the form of infected machines scanning for new potential hosts, by trying to establish
connections to TCP/IP port 445.

The significant proportion of observed Windows Remote Desktop Protocol (TCP/IP 3389)
traffic is interesting because historically this service has not been listed as a top noise
generator as shown by Francois, Festor, et al. (2009). This can be attributed to it being
difficult to weaponise the Remote Desktop Protocol. In the past there has only been
one mainstream worm that has made use of the RDP protocol. As noted by Vizváry
and Vykopal (2013), the Morto worm did employ the Remote Desktop Protocol as it
attempted to exploit users, but it did so by checking for weak passwords by brute forcing
username and password combinations. In order for a service exploit to be successfully
deployed by a worm, the exploit needs to leverage predictability and allow for remote code
execution because a worm relies on scripted propagation mechanics (Manna, Chen, and
Ranka, 2010; Wei, Hussain, Mirkovic, and Ko, 2010). MS08-067 falls into this category,
but according to the National Vulnerbaility Database (2013), which is maintained by
the National Institute of Standards and Technology (NIST), there has not been a Remote
Desktop Protocol exploit that allowed for remote code execution until March of 2012, when
MS12-020 (Microsoft, 2012)or CVE-2012-002 was added. MS12-020 changed this and for
the first time there was such a theoretical exploit, albeit one that had a low probability
of successfully being leveraged as shown by Rapid7 researcher Sherwyn (2012). As of
January 2013 there is still no proof of concept that is freely available and able to exploit
MS12-020 without causing the server to crash into a non-responsive ‘blue screen’.

The test data collected by the Amber node reveals though that the occurrence of Remote
Desktop Protocol connections that were captured persisted throughout the test. This
could mean that there is a working remote code execution proof of concept for MS12-020
that has not been made public, and that it is being used by a worm. This is consistent
with other internet noise-related studies by Pang, Yegneswaran, Barford, Paxson, and
Peterson (2004);Irwin (2013b). There is also a second possible explanation for the increase
of TCP/IP port 3389 noise on the internet. Soon after MS12-020 was made public,

57

Kaminsky (2012) published the results of a scan against 300 million internet-connected
hosts on TCP/IP port 3389. The purpose of the scan was to estimate the potential
exposure of MS12-020 (Caldwell, 2012). Researchers have had difficulties building the
remote code execution proof of concept for MS12-020, so a great deal of uncertainty
exists around the exploit. This could lead more researchers to focus their attention on
the exploit or the possible implications if the exploit was weaponised. The continuous
Remote Desktop Protocol scans could be related to this sort of research; research that is
being conducted into what the potential exposure of a successful MS12-020 remote code
execution proof of concept would be.

4.3 Test Results: Expanding to Geographically Dispersed Nodes

Compared to the pilot test capture settings which used TCP/IP port 135, 445 and 3389,
the inclusion of the remote nodes also added TCP/IP port 80 and 443 to the listening
daemon. This decision was made to maximise the amount of data that the remote nodes
collected by increasing the listening surface area, as the purpose of this test was to establish
a link between the different nodes and the source IP addresses that accessed them. Any
form of attribution had to be conducted on a country basis, as the translation from
source IP address to location is not accurate to a specific location as depicted by Poese,
Uhlig, Kaafar, Donnet, and Gueye (2011). Translating from source IP address to geo-
location mostly only returned the capital city and country from which the IP originated.
To facilitate a process of being able to draw a conclusion from the data, the dataset was
normalised to only report the country that it belonged to. This means that all conclusions
are drawn on country of attribution, but if more data was available it was stored and used
to plot the geographical dispersion figures and maps.

4.3.1 Amber Node: South Africa

Over the nine months of data capture, the South African Amber node captured 2 868 IP
addresses, while listening on five of the ports, which received traffic portions according
to Table 4.2. The most popular TCP/IP port was TCP/IP 3389, or Microsoft’s Remote

58

Table 4.2: South African node
Rank Port Occurrences Percentage of total
1 3389 1436 50.07%
2 80 741 25.84%
3 445 414 14.43%
4 443 184 6.42%
5 135 93 3.24%

Total 2868 100.00%

Table 4.3: Top 10 attributed countries for South African node
Rank Country Occurrence Percentage
10 United Kingdom 51 3.81%
9 Korea, Republic of 51 3.81%
8 Spain 57 4.25%
7 South Africa 68 5.07%
6 Russian Federation 69 5.1%
5 Turkey 72 5.37%
4 Germany 122 9.10%
3 Brazil 149 11.12%
2 Argentina 241 17.98%
1 China 460 34.33%

Total 1340 100.00%

Desktop Protocol (RDP), making up 50.07% of the traffic. TCP/IP port 80 was the
second most popular port used by connections that were captured by the node, but was
almost half of the total amount of TCP/IP port 3389 captured. MS08-067’s spreading
mechanism, TCP/IP port 445 was still relatively popular, and accounted for 14.43% of
the traffic, making it the third most popular port.

Focusing on the country source of the connections that were captured, 104 distinct regions
were recorded as being hosts for one or more connection. The data is skewed towards a
handful of regions which made up the majority of the recorded connections. Similar work
done by Yegneswaran et al. (2003) also showed this as 71% of their most frequent source
IP addresses were traced back to one region, the United States. In the case of the South
African node, the top 10 countries are shown in Table 4.3.

The Top 10 slice of the dataset contained 1 340 observations, which is 76.73% of the total

59

dataset. Of that subset, China accounted for 34.33% of the Top 10 data, followed by
Argentina, Brazil and Germany. Table 4.4 shows the traffic that originated from China
expanded into the five TCP/IP ports. China’s traffic does align to what was observed in
the total traffic, whereby TCP/IP port 3389 is the majority of the traffic by a large margin,
followed by TCP/IP port 80. This is not the same compared to the second highest source
region, Argentina, where 91.75% of traffic attributed to this region targeted TCP/IP
port 80, also shown in Table 4.4. The data collected from connections that originated
from Brazil had a bias towards TCP/IP port 80 and 3389 equally as depicted in Table
4.4. Traffic on those two ports accounted for 87.92% of the total traffic, while German
attributed data was again in line with that seen from China, favouring TCP/IP port 3389
but to a much lesser extent.

4.3.2 Amber Node: Germany

Over the nine months of data capture, the German Amber node captured 1 155 IP ad-
dresses, while listening on five of the TCP/IP ports. The most popular TCP/IP port
was different to that of the South African node, favouring TCP/IP port 445 which is
MS08-067’s propagation medium. TCP/IP port 445 constituted 47.88% of the total traf-
fic analysed by the node, followed closely by TCP/IP port 3389 at 26.93% as shown in
Table 4.5.

Focusing on the regional source of the connections that were captured, 88 distinct regions
were recorded as being hosts for one or more connection, slightly higher than the South
African node but not significantly. The data is skewed towards a handful of regions which
made up the majority of the recorded connections. The Top 10 countries in the case of
the German node are shown in Table 4.6.

The Top 10 slice of the dataset contained 520 observations, which is 45.02% of the total
dataset. Of that subset, as with the South African node, China accounted for the single
highest region source. 24.04% of the Top 10 data originated from China, tapering off to
Germany, the Russian Federation, India and Brazil. Table 4.7 expands the traffic that
originated from China into the five TCP/IP ports. The China-based traffic that was
captured by the German node is quite different from that recorded by the South African

60

Ta
bl

e
4.

4:
Po

rt
pr

ofi
le

fo
r

at
tr

ib
ut

ed
co

nn
ec

tio
ns

to
SA

no
de

61

Table 4.5: German node
Rank Port Occurrences Percentage of total
1 445 553 47.88%
2 3389 311 26.93%
3 80 157 13.59%
4 135 94 8.14%
5 443 40 3.46%

Total 1155 100.00%

Table 4.6: Top 10 attributed countries for German node
Rank Country Occurrence Percentage
10 United Kingdom 26 5.00%
9 Turkey 30 5.77%
8 Netherlands 31 5.96%
7 Spain 35 6.73%
6 Taiwan 37 7.11%
5 Brazil 39 7.50%
4 India 53 10.19%
3 Russian Federation 59 11.35%
2 Germany 85 16.35%
1 China 125 24.04%

Total 520 100.00%

62

node. In this set, connections originating from China had a equal bias towards TCP/IP
port 3389 and 445. Germany was the second highest regional source of connections to
the German node, detailed in Table 4.7. Interestingly enough it did also not follow the
same connection profile that was recorded by the South African node, heavily favouring
TCP/IP port 135 opposed to 3389 or 445. TCP/IP port 135, or Remote Procedure Call
(RPC), is another common worm propagation port that was very successfully used by
the Blaster worm in 2003 (Bailey, Cooke, Jahanian, Watson, and Nazario, 2005). RPC
accounted for 40% of German connections. Connections that originated from the Russian
Federation favoured both TCP/IP port 445 and TCP/IP port 3389, but with a bias
towards port 445. The other ports that were monitored hardly recorded any results at all,
as shown in Table 4.7. Connections that were recorded as originating from India, show
a definite bias towards TCP/IP port 445, hardly recording any other ports whatsoever.
The connections from Brazil also favoured TCP/IP port 445, making up 53.85% of the
connection destination ports, but there was also a large portion of TCP/IP port 3389
recorded.

4.3.3 Amber Node: United States

Over the nine months of data capture, the United States Amber node captured the most
observations, recording 10 695 IP addresses, whilst listening on the five TCP/IP ports.
The most popular TCP/IP port was overwhelmingly TCP/IP port 445. Connections
trying to access Microsoft’s Remote Procedure Call (RPC) on port 445 accounted for
89.70% of the total traffic. This was followed by TCP/IP port 135, which had made up
a minor portion of the traffic on the other three nodes.

Focusing on the regional source of the connections that were captured, 140 distinct regions
were recorded as being hosts for one or more connections, significantly higher than both
the South African and German nodes. As before, the data is skewed towards a handful
of regions which made up the majority of the recorded connections, but where the other
nodes had one region that dominated the distribution of connections, the United States
node recorded three. Taiwan, the United States and Romania accounted for 45.42% of
the top 10 traffic sources, as shown in Table 4.8.

63

Ta
bl

e
4.

7:
Po

rt
pr

ofi
le

fo
r

at
tr

ib
ut

ed
co

nn
ec

tio
ns

to
G

er
m

an
no

de

64

Table 4.8: Top 10 attributed countries for the United States node
Rank Country Occurrence Percentage
10 Venezuela 308 6.16%
9 Bulgaria 311 6.22%
8 Italy 313 6.25%
7 Japan 397 7.94%
6 China 422 8.44%
5 India 463 9.26%
4 Brazil 515 10.3%
3 Romania 694 13.87%
2 United States 776 15.52%
1 Taiwan 801 16.01%

Total 5000 100.00%

The Top 10 slice of the dataset contained 5 000 observations, which is 46.75% of the total
dataset. While Taiwan, the United States and Romania constituted the majority of the
Top 10, they also made up a large portion of the total set. The combined connection total
for the three regions equalled 21.23% of the total set of source IP addresses collected.
Looking closely at each of the countries also revealed instances that were unique to this
region, chiefly that the top attributed region caused a huge skew in the data. Table 4.9
shows that source IP addresses that connected from Taiwan and used TCP/IP port 445
accounted for 88.51%. The United States was the second highest source of traffic that the
US node recorded, and as with the Taiwanese region, it also consisted mostly of TCP/IP
port 445 connections. The distribution is not as aggressively skewed towards TCP/IP
port 445 such as in the case of Taiwan, but it is very close accounting for 84.41% of the
total connections. This trend continues through the top three source regions. The data
that was captured by the US node and that was attributed back to Romania also showed a
strong bias towards TCP/IP port 445. As Table 4.9 also shows 95.37% of the connections
requested Microsoft’s RPC protocol. The only other port recorded from Romania was
TCP/IP port 135. The prevalence of TCP/IP port 445 is not limited to the top three
regions, and can actually been seen across the top five regions, the last of which are Brazil
and India. Both of these countries recorded distributions that are above 95% (97.86% for
Brazil and 98.70% for India).

This trend can be seen in Table 4.10 when the total port distribution for the US node is

65

Ta
bl

e
4.

9:
Po

rt
pr

ofi
le

fo
r

at
tr

ib
ut

ed
co

nn
ec

tio
ns

to
U

S
no

de

66

Table 4.10: United States node
Rank Port Occurrences Percentage of total
1 445 9593 89.70%
2 135 877 8.20%
3 3389 186 1.74%
4 80 36 0.37%
5 443 3 0.02%

Total 10695 100.00%

examined because 89.70% of all the data collected was attributed to TCP/IP port 445.
No other node experienced such a high level of distribution bias.

4.4 Visualising Source IP addresses

The previous section made use of certain techniques, as shown by Padmanabhan and
Subramanian (2001), that map an IP address to an estimated geolocation. The process
is helpful because it can convert seemingly random IP address sequences into common
locations, aiding analysis. In the previous section this made it possible to group the
recorded attacks back to countries. The number of attacking countries for each node
exceeded 100 entries which makes it difficult to view the relative attack propensity of
the less prominent countries. To address this shortcoming each node’s list of the source
IP addresses was converted into their corresponding geolocation via the MaxMind (2013)
GeoIP database. This transformed an IP address into a country, and depending on the
data that was available, some of the IP addresses were translated into city and country.
The data was then grouped together into a list of named locations that had tried to
connect to the Amber instance, instead of IP addresses, which allowed for the above
analysis to occur.

According to Kress and Van Leeuwen (2006) people relate better to visual representations
than lists so it was decided that a visual representation of the data would overcome the
difficulties of presenting a list of over 100 countries. A method of plotting the source
locations on a map was chosen because it overlayed unknown information (the source
countries) onto a piece of well-known information (a map of the world). Google has

67

Figure 4.4: Google Maps API Javascript array

a simple mapping function that utilises the maps.google.com service to add markers at
certain locations, which are parsed to the maps.google.com API via Javascript. The API
does not accept named locations, instead requiring GPS coordinates to place markers.
This meant that the list of source countries needed to be converted into a list of GPS
coordinates before they could be parsed to the maps.google.com API. Geopy3 is a Python
library writen by Exogen (2010) that is able to do this mapping, by querying an online
database for each IP address that it is parsed. As noted earlier, converting from an IP
address to a location is not an exact process (Padmanabhan and Subramanian, 2001),
and the same is true for converting from named location to GPS coordinates. This is so
because a named location such as China, can have millions of GPS coordinates, which is
also true even at the city level. Therefore when a location is parsed to the geopy library
it returns an array of possible GPS coordinates which could be the named location. The
assumption was made that the first coordinate pair would be used.

The list of coordinates was then taken and transformed into a Javascript array which
the maps.google.com API understood, as shown in Figure 4.4. The file is constructed in

3
https://code.google.com/p/geopy/

68

Figure 4.5: Marker size scales with count variable

HTML, which calls the API when it is rendered by a browser. While this method did
work, the maps.google.com API is not able to group multiple markers together if they
fall on the same coordinate. This meant that a single marker could indicate one, ten or a
thousand instances of attack. To remedy this some logic was built into the Javascript that
rendered the HTML. Once the array was built, it would search for duplicate coordinates
and keep track of how many times a duplicate occurred. The API allows for a custom
image to be used as a marker instead of the default one, and this functionality was used
to draw attention to coordinate pairs that represented a large amount of duplicates.

Figure 4.5 shows the use of custom images to denote a marker on the map that has
more than 40 duplicates, less than 40 duplicates, less than 20 duplicates or less than 6
duplicates. The images that are assigned to each of those categories increase in size to
highlight the increased amount of duplicates, from 10x10, 20x20, 40x40 and 80x80 pixels.
A sample of the markers is shown in Figure 4.6.

The final HTML rendering, Figure 4.7, shows a world map and overlayed markers on areas
of high attack that were recorded by the South African Amber node. From this view,
certain quick conclusions can be made such as North Africa was not a large contributor

69

Figure 4.6: Marker sizes

Figure 4.7: World map visualisation of the SA node’s captured data

to the threats that the node recorded. There is some infrastructural logic around this as
North Africa and other third world regions are not endowed with personal computers and
fast internet connections as stated by the World Bank Development Data Group (2012).
One that is not that logical is Australia, which is an advanced country, but which caused
few of the connections seen by the South African node. The United States, Europe and
certain parts of Asia constituted the largest amount of attacks, which is expected based
on the table summaries done earlier.

What the visual representation does allow is for a high resolution view of the attacking
country, showing which regions in the country were more likely to be an attacker. By
redrawing the world map in Figure 4.7 to only include a particular region such as Europe,

70

Figure 4.8: European map visualisation of the SA node’s captured data

as per Figure 4.8 the map’s increased resolution shows what areas in that region were
particularly malicious. It shows that Germany and Spain were the greatest single sources
in Europe.

A visual representation of each of the other nodes is also possible. Figure 4.9 shows
the German node’s map, which is particularly interesting because it quickly relays the
difference in the amount of African-based attacks when compared to the South African
node. The South African node experienced an increased number of attacks and from more
African nations than the German node, which could indicate there is a high propensity
to be targeted by regions that share the similar infrastructure such as undersea cables.

This finding is further supported by increasing the resolution of the German node’s world
map to show the same European region as Figure 4.8. The amount of German originating
traffic as depicted in Figure 4.10 is significantly more than that of the South African node.

A world map generated by the United States node’s attacker list surcomes to the same

71

Figure 4.9: World map visualisation of the German node’s captured data

Figure 4.10: European map visualisation of the German node’s captured data

72

Figure 4.11: World map visualisation of the US node’s captured data

problem as the extensive list originally recorded. It is difficult to visually discern between
regions in figure 4.11 because the markers cover most of the map’s surface. What is
distinguishable is that there is still a lower amount of attackers originating from the
African region when compared to the rest of the attacker map. A visual investigation also
shows that there were a greater number of attacks originating from Europe or Asia than
from the United States. This is inconclusive because the size of the markers in Europe
are so large that they obstruct meaningful analysis at this view.

Focusing on the European region of the United States world map in Figure 4.12, and com-
paring that to the United States from the world map, there is a clear sense of distribution
throughout the region. Hungary, Slovakia, Romania and Bulgaria showed concentrations
on certain locations as well as a distributed scattering of markers in that country.

These collections of maps show a snapshot of the historic threat landscape in terms of
malicious connections that have been attributed to certain countries. Previous discussions
have mentioned the shortfall in the attribution process of converting IP address to regions,
which has the potential to nullify any form of analysis from this visual standpoint, but
the changes in the threat map can be analysed. A change in the map, for example if there
is a drastic increase in the amount of malicious connections being observed from one of

73

Figure 4.12: European map visualisation of the US node’s captured data

74

Figure 4.13: South African map visualisation of the ZA node’s captured data

the less significant regions, such as the Democratic Republic of Congo, could be worth
investigating. The specific profile of these connections could lead to a new threat that has
emerged and is still publically unknown, or if there is a targeted attack underway against
the network from that region.

The German and United States nodes reported very little atrribution towards South
Africa, epecially comapred to the South African node, which shows a large concentration
of connections on the world map view in Figure 4.7. Zooming into the South African
portion, as shown in Figure 4.13 highlights that the majority of the connections were
attributed to Johannesburg, which is also were the server was hosted. Based on this it
would seem that a system faces a unique set of threats from systems that are phyiscally
closer to it.

75

Table 4.11: Length of threat streams per Amber node
South Africa United States Germany

South Africa - - -
United States 15 (0.11%) - -
Germany 25 (0.62%) 43 (0.36%) -
IP’s Collected 2868 10695 1155

IP’s linked to all three nodes: 4 (0.027%)

4.5 Gains Through Distributed Intelligence

Testing the relevance of each geographically different threat stream on the data that
was captured by the local, South African segment, would be achieved by looking for any
common source IP addresses that were seen by the United States or German nodes and the
South African node. As stated above, the three nodes measured the following successful
connections as shown in Table 4.11. Each source IP address, from each of the nodes was
compared to the other two nodes’ IP address streams. A match would indicate that a
particular IP address was discovered by both nodes, and showed that there is a correlation
between the nodes.

The data in Table 4.11 shows that there was a very small set of IP addresses that were
logged by two or more nodes. The German and United States based nodes logged 43
common source IP addresses, while the South African node only logged 25 IP addresses
that also attempted a connection with the German node. The US and South African
nodes recorded the lowest intersect of source IP addresses, finding only 15 IP addresses
that were common between them. Only 4 IP addresses were common between all three
of the nodes. Based on these findings it would seem that there is low value derived from
distributing Amber nodes in geographically different locations, however longer sampling
would be required to confirm.

While these results are on a minor scale, it does invite the question as to whether or not
there is any value in applying threat countermeasures in one region based on intelligence
collected in a different region. There are numerous commercial products that offer this
service (Alme and Eardly, 2010) and while it was not possible to test this at the same scale
as the large security vendors, it would seem that the ability of a small threat stream to

76

be useful outside of its region is extremely limited. As a substitute, the information that
was gathered from the Amber nodes was cross-checked against the OpenBL.org project’s
360-list day. OpenBL.org4 is a project that records incidents of abuse from IP addresses
for the purpose of blacklisting. The project tracks instances where source IP addresses
attempted to brute force a service that was hosted by the OpenBL.org project. These IPs
are stored in list files that span time periods of 30, 60, 90, 180 and 360 days, as well as
meta lists that are service specific. Their 360-day list was the closest match to the time
period in which the region Amber nodes were capturing source IP addresses. At the time
of writing the OpenBL 360-day list contained 16 472 IP address, which when compared
to the 14 718 IP address that the Amber nodes had collected, resulted in no common
addresses. This further supports the very limited use of applying third party blacklists as
a security control.

4.5.1 Weighted Scoring

According to the previous section’s analysis, there is little value in building a distributed
threat model that relies on only the IP addresses that it identifies as malicious, but if
the data is categorised into countries, the way in which it can be analysed is changed.
Looking at the data on a country level shows that certain countries are more prone to be
attackers than others as certain regions seem to appear on more than one of the node’s
Top 10 attack lists.

We can determine which country is responsible for the most malicious traffic by building
a weighting system by assigning each country in the Top 10 list a number between 1 and
10 depending on if they are the at the bottom or at the top of the list. Only the Top 10
countries were taken into consideration because it lessens the influence of outliers. These
scores are then added up for all three lists, and displayed in Table 4.12. For example,
Romania appears in position eight on the United States node’s list where ten is the
most dangerous country, but Romania does not appear on any of the other node’s lists.
Therefore it has a score of 8 (8+0+0=8). The Russian Federation on the other hand
appears on two lists: spot eight on the German list and spot five on the United States
list. This produces a score of thirteen (8+5+0=13).

4
http://www.openbl.org

77

Table 4.12: Threats identified by the weighted scoring method (country and continent)
Country Score Continent
Venezuela 1 South America

United Kingdom 2 Europe
Bulgaria 2 Europe

Korea, Republic of 2 Asia
Italy 3 Europe

Netherlands 3 Europe
Japan 4 Asia

South Africa 4 Africa
Spain 7 Europe

Romania 8 Europe
Turkey 8 Europe

United States 9 North America
Argentina 9 South America

Russian Federation 13 Asia
India 13 Asia

Taiwan 15 Asia
Germany 16 Europe

Brazil 21 South America
China 25 Asia

78

Using the weighted list method, Table 4.12 was constructed, which highlights that China
is the most prevalent region amongst the three nodes, scoring a total of 25. Based on this,
China is the most dangerous region to which connections can be attributed. This is not
a surprise since China has been labelled as a high source of malicious traffic by the press
and industry experts ever since a report by Mandiant Central Intelligence, MCI (2013);
Fidler (2013) claimed that their military was responsible for cyber attacks.

The weighted scoring system also highlights Brazil, Germany and Taiwan as regions that
hosted a high number of malicious traffic sources, which is less obvious than China’s
inclusion in the list. This information is useful as it could be used to increase the weight of
intrusion detection system signatures that match on a possible intrusion, that is also being
launched from a region that has a high score. This is illustrated in the following example:
A Snort IDS is placed in front of a Microsoft Windows server, which is configured with
a signature that alerts when brute force login attempts are detected against the Remote
Desktop Protocol. The signature does this by triggering an alert on five failed login
attempts. It is plausible that a legitimate user could mistype his password five times,
creating a false positive incident, but by also looking at the source of the connection and
matching that against the weighted list findings these false positives can be given less
priority. If the failed login attempts are also coming from Brazil, then more attention
should be given to that incident than those which originated from the United Kingdom.
Grouping the countries into their respective contenint shows that, while the weighted
list is equally populated with European and Asian countries, Asia is almost 47% more
dangerous as Europe and 700% more dangerous than the North American continent as
scored by the sum of weights attributed to each contenint

This adds another dimension to incident evaluation as it offers signature evaluation sys-
tems a method of prioritising incidents that are attributed to countries that are more
dangerous than others.

4.5.2 Profiling Countries

When factoring the source IP addresses in their respective originating regions, another
avenue of potential threat analysis arises. Another use for distributed threat intelligence

79

outside of simply blacklisting source IP addresses is to template the different source re-
gions. As mentioned above certain countries had a bias towards a certain protocol, and
that bias was recorded by multiple nodes. Taiwan is the strongest example of this. The
United States node listed Taiwan as hosting the most malicious connections that at-
tempted to connect to it, and that those connections consisted mostly of TCP/IP port
445. Looking at the German node, Taiwan was not as prevalent on the Top 10 list
when compared to the United States node (sixth position opposed to first), but the Ger-
man node recorded that of the connections that originated from Taiwan 89.19% where
TCP/IP port 445. The South African node tells a different story though. Taiwan didn’t
make its Top 10 list of malicious origins, and was ranked 14th, and also did not display
a strong bias towards any particular port. The connections from Taiwan as recorded by
the South African node was split between TCP/IP port 3389 (48.89%) and TCP/IP port
445 (37.78%).

This discovery altered the original hypothesis, in that it should only be applied to countries
that showed a strong bias towards a certain TCP/IP port. By focusing on the countries
that showed a port bias, the indicators generated by templating are only based on strong
signals. This new hypothesis fitted the Taiwan example, where there was a bias for
TCP/IP port 445 recorded by the United States and German node, but not in South
Africa where there was no bias. It also fits with Brazilian originated traffic. Brazil
appeared on the Top 10 list of all three nodes, but the TCP/IP port profiling showed that
connections that originated from Brazil had no correlation between nodes. The German
nodes profiled the connections originating from Brazil as having a minor bias towards
TCP/IP port 445 (53.85%) with a strong complement of TCP/IP port 3389 (35.90%).
The United States node instead showed an extremely strong correlation to TCP/IP port
445 with 97.86% of the connections using it, but the South African node saw an equal
split between TCP/IP port 3389 (45.64%) and TCP/IP port 80 (42.28%).

This was not the case when the hypothesis was tested against the rest of the data set.
China, the largest connection originator of the data set did not fit this hypothesis because
all three nodes had recorded connection profiles that were all biased towards a certain
port, but none of which overlapped. The South African node recorded a bias for TCP/IP
port 3389 (70.87%) while the German node profiled connections from China as favoring
TCP/IP port 3389 (51.20%) and TCP/IP port 445 (40.00%). The United States node on

80

the other hand recorded an overwhelming bias for TCP/IP port 445 (83.89%). This does
not fit into the hypothesis of profiling country connections. China, Brazil and Taiwan are
also the only countries that appear on all three of the node’s Top 10 lists, which means that
they are the only countries on to which this kind of analysis can easily be applied to, as
those countries that to not appear on the Top 10 list did not generate enough connections
from which to draw conclusions. The hypothesis of profiling a country’s traffic based
on bias data collected by the nodes was abandoned because of varying results that were
recorded, and because the hypothesis was in danger of becoming tailored to the data set.

4.5.3 Local Bias

Profiling a region’s outbound connections might not be possible due to the differences
that the nodes recorded, but the fact that an originating region has a bias for a certain
destination port is in itself interesting. Network scanners such as Unicorn Scan (Nomura,
Watanabe, Tartakowskï, and Six, 2007), Nmap (Wolfgang, 2002; Yarochkin, 2013) and
Zmap (Durumeric, Wustrow, and Halderman, 2013) will by default scan a large number
of common ports, including those exposed by the three distributed Amber nodes. Because
all of the ports would be triggered equally by a default scan, the emergence of a region
that is biased towards a certain port when connecting to a node indicates that that port is
specifically being targeted by connections that are attributed to that particular region. If
an Amber node is deployed onto a segment, connections that it records are already relevant
to the segment, which makes it possible to profile an attributed region specifically for the
local segment.

For example, the South African node recorded connections from the Russian Federation
as having a bias towards TCP/IP port 3389 (75.36%). Since this traffic is relevant to the
local segment, this information could be used to improve scoring-based signature systems
such as Snort, by increasing the score of all connections from the Russian Federation
that try to connect to TCP/IP port 3389, which has become a recent threat as research
by Irwin (2013b) has shown. This example overlaps a lot of the same intelligence that
the weighted scoring system uncovered as the Russian Federation would have already
been seen as a potential for malicious traffic. Because the scoring system is cumulative
(additional intelligence increases the priority, and is not lost) this is not necessarily a bad

81

thing, but it does help identify new threats for countries that the weighted scoring system
misses.

The South African node is unique in that the Republic of Korea only appears on its
Top 10 connection lists. The weighted scoring system would therefore not add a higher
priority to connections from the Republic of Korea. Using the Local Bias method, we
see that connections from the Republic of Korea were biased towards TCP/IP port 3389.
This intelligence can be applied to other security controls which make use of signatures,
supplementing the scores of those signatures. Such a system could be linked to a local
deployment of an Amber node which can update signature priority based on regional
attribution and ports. For example, the priority of TCP/IP port 3389 connections from
the Republic of Korea can be increased, focusing the time of expensive resources such as
human security analysts on incidents that have a high potential of being malicious.

4.5.4 Combined Data Analysis

Earlier it was shown that there is little value in employing a remote node’s IP list as a
blacklist, but that value could be realised if the data was converted into regions and then
analysed. This process of transforming data from its ‘raw’ form into data that is different
but still related to the original data set allows for new directions to be pursued when
analysing data. The ability to view three data sets that were collected in identical ways,
but from different sources holds its own value.

This has shown that traffic that was attributed to the same region as a node that col-
lected it had a higher probability of being malicious when compared to the remote nodes
observations. The South African node was the only system that recorded a significant
amount of South African attributed connects, and the German and United States nodes
both recorded more localised traffic than their international counterparts did. The data
profile in terms of what ports where attacked, as shown in the previous section, was also
different for each region.

Based on this data, locally created security controls might have an advantage over inter-
national products when deployed in their country of origination. If the security control

82

was developed in a local region, then it stands to reason that it was fine tuned to a certain
degree, for the threats and attacks that face that particular area. This would give such
controls an intrinsic knowledge over the kinds of threats that face those regions. Overall
this is inconclusive and requires more targeted investigating.

4.6 Enterprise Deployment

In order for this research to be relevant it should be deployable in an enterprise of varying
sizes, and still add value to the overall network. This covers two forms of network layouts:
small and complex. Small networks consist of a single segment, while complex networks
are made up of many interlinked smaller segments, or small networks.

4.6.1 Small Networks

Amber was originally architected and built on a single segment network, which is the
equivalent of a small company network. While the testing deployment required the use of
a full packet capture system as well as the Amber node, a production system would only
require a single Amber node on the segment. That Amber system could feed the data
that it collects directly to the firewall or other security control, allowing the process to be
productive while only introducing one system into the environment.

This architecture, shown in Figure 4.14, is the simplest and cheapest to deploy from a
resourcing point of view. By deploying one system, the network segment would be able
to generate a stream of IP addresses that are relevant to incoming attacks, which can
be passed to a network enforcer such as a firewall, IPS or other security control. With
this deployment it would also be possible to retrofit the Local Bias signature augmenting
method because it does not require the use of geographically distributed nodes to make
actionable intelligence. That intelligence would be sent to the IDS and / or IPS where it
would be applied onto the control’s signatures.

83

Figure 4.14: Amber architecture for a small network

4.6.2 Complex Networks

Scalability is a common problem faced by security controls, specifically those that are
installed inline such as firewalls and IPS devices, because they are designed to inspect all
data that enters or exits a network. If the amount of data that is flowing through network
increases, then the device needs to be able to process the increased load. This impacts
the architecture and design of these security controls when they are deployed in a small
medium enterprise (SME) of 200 users, opposed to a large enterprise of 30 000 plus users.
This is evident in the price differences of SME firewalls (rated to 100Mb/s) and Enterprise
firewalls (10Gb/s plus). Amber does not have these limitations because it is not an inline
device, and only needs a presence in a segment. Architecture is then done on a per segment
basis, and can be scaled by duplicating the segment deployment to another segment. If
a network comprises five segments, then the architecture would be to deploy five Amber
nodes, one into each of the segments. One consideration is that once more than one
segment is being studied, it would be beneficial to add an Amber command and control
server to the architecture. The command and control server would sit in an internal,
trusted segment and collect the connection information from each of the Amber nodes as
shown in Figure 4.15. It would then combine the information and construct a joint threat
stream which would be sent to all of the perimeter enforcers. Combining the threat lists

84

Figure 4.15: Amber architecure for a complex network with CnC server

is possible in this scenario because, and unlike the geographically distributed nodes, the
nodes are intrinsically linked by common IP space ownership, and the geographic location
of the segments (it is assumed that the segments are all housed in a single data centre).

A full architecture with multiple local nodes, a local command and control server and
three or four geographically distributed nodes would still be very efficient in terms of
cost and ongoing management/maintenance. The distributed nodes were able to run for
months without any intervention due to watchdog scripts, meaning that once a local or
geographical node is deployed very little interaction is needed. The command and control
server would need more initial work as each node needs to be attached to its inventory.
This requires the transfer of SSH keys and whether it is a local or geographical nodes
because the type of data that can be pulled from the data stream is different for each.
Then the command and control server would need to fetch the up-to-date IP address list

85

at a fixed interval, which can be optimised for coverage (increased frequency) or minimal
network usage (decreased frequency). Analysis can be performed after each data pull
or at certain times such as once a day or every 10 minutes depending on resourcing
and the amount of IP addresses in the data stream. The actual analysis is fairly light
on resource utilization, but the distribution of that intelligence to the network enforcers
and intrusion detection systems could introduce congestion. Traditionally firewalls and
intrusion detection systems need to reload their rule sets once a change has occurred,
which takes time (Acharya et al., 2006). If the analysis resolution is set to high, then
a bottleneck could occur at the rule set reload stage. This is very dependent on the
particulars of the environment in which Amber is deployed, and would need to be tuned
for each environment.

4.6.3 Command and Control

With multiple Amber nodes in separate segments, and an Amber command and control
server it would be possible to also generate a weighted scoring list. The Amber nodes
would send their data lists as per normal to the command and control server, which would
run the weighted scoring analysis and send the results to the appropriate security controls,
such as an IDS. It would also be possible to supplement the ecosystem with multiple
geographically distributed nodes which report back into the command and control server.
The data that the geographic nodes collect would be added to the command and control
server and analysed as if it were any other node, except that it would only produce
weighted scoring lists from that information.

The command and control server also centralises all the data that the Amber nodes
collect, making it possible to generate reports for the entire Amber ecosystem from one
location. These reports can take the form of security metrics or applying transforms on
the data the Amber nodes collect. Possible transforms could be to do reverse lookups on
the connecting IP addresses and analyse any correlation in the domains that are being
used, or the method in which the reverse names were constructed. The command and
control server forms the basis of these extended capabilities, but it also creates a central
point of weakness for the Amber deployment. Because the Amber nodes have exchanged
public keys with the command and control server, if an attacker is able to take control

86

of the central server they will also have full access to each of the Amber nodes and can
destroy them by logging into them. This is not that severe because the value of the nodes
is the data that it collects and if an attacker does manage to disable one of the Amber
nodes little damage will be done to the production environment, as mentioned in section
3.3.2, Denial of Services attacks against an Amber node. What is more worrying is if
an attacker starts to corrupt the data that the Amber nodes are feeding into the other
security controls. A knowledgeable attacker could edit the data before it is analysed
and, feeding information into the ecosystem that would lower the priority of their attack
locations. This would lower the likelihood of future attacks being detected. To defend
against this attack, the command and control server would be protected in the same
way as any other centralised security system (firewall management stations, and antivirus
signature deployment servers), such as only allowing certain IP addresses to log into the
server and installing a local firewall.

4.7 Summary

This chapter takes the data that was collected by single and distributed Amber nodes
and expresses it in terms of lists, showing the Top 10 attributed countries and which
ports constituted the largest percentage of traffic. It also visualises the full data set
via the maps.google.com API, through which a richer understanding of the countries
that do not fall within the Top 10 was attained. The chapter reveals that once the
data of the three distributed nodes was combined, very few of the IP addresses were
repeat-findings between the nodes, which questions the value of commercial IP blacklists.
Data analysis did yield three potential methods of transforming the data that the Amber
nodes captured and applying them to signature-based security controls. The intelligence
produced by the nodes for the security controls could aid the systems in focusing on
incidents that are more likely to be malicious. Two of those methods could be integrated
into signature-based systems, such as an IDS/IPS and firewall, while the third was found
to be unsuccessful. The chapter ends by detailing how to deploy an Amber ecosystem
into an enterprise network. Both simple and complex network environments are explored,
as well as the low cost at which such an ecosystem could be deployed. The concept of
a central command and control Amber server is expanded on, explaining the advantages

87

and potential weaknesses of using a central system, as well as ways in which it can be
secured. The following chapter identifies possible future enhancements to the Amber
ecosystem in terms of additional data transforms and techniques to improve the weighted
scoring method by normalising certain aspects of the data as well as other factors that
could influence the profile of the connections that an Amber node captures.

88

5 Conclusion

This research set out to prove that a security model that was built on the comparative
strengths of two distinctly different, but related security models, could increase the secu-
rity posture of a network segment. The two security models, Decision through Detection
and Decision through Presence, both aim to improve the security posture of the assets
that they are tasked to protect, but each manages to fulfil that custodianship with a
different methodology and different associated costs. Despite their differences, each of the
security models can be factorized into two distinct phases: the Discovery phase and the
Action phase. Each model provides a notable cost advantage in one of the two phases,
thus bestowing a differing competitive advantage to both.

In the traditional implementations, DtP is able to assess a threat in the Discovery phase
at a relatively low cost, but falls short in the Action phase due to the amount of intensive
research that is required. DtD on the other hand requires a large amount of research in
the Discovery phase. While the research can be centralised and distributed to an infinite
number of nodes, it does also increase the likelihood of false positives being detected as
threats. Despite DtD’s expensive Discovery phase, it has a superior Action phase as it
leverages off the research completed in its Discovery phase. This asked the question of
whether it would be possible to combine the Discovery phase of the DtP model and the
Action phase of the DtD model, so as to capture the most successful pieces of each model
and build a new model which is more efficient. It was decided to show the possibility
of combining security models by building a system that would adhere to a hybrid model
approach, and would then be empirically tested to discover if it would be able to improve
the security posture of a network segment.

Using the DtP security model’s Discovery phase and the DtD security model’s Action
phase methodologies, Amber was able to improve the security posture of the environment
that it was connected to, as measured by its ability to detect a source IP that would later
try to connect to multiple other hosts on the segment, informing a network enforcer of
the IP address. Based on this it would be practical to use the hybrid model to build a
new generation of security controls that adhere to the core concepts of the hybrid model;
identifying unused electronic space, for which there is no productive use in accessing, and
then connect it to an enforcer which controls access to information technology assets. It

89

was not practical to increase the amount of nodes on a single segment due to each node
needing a piece of unused internet space, but it was theorized that multiple, geographically
separate nodes could be interconnected through a command and control server. Each of
the nodes would then send their individual IP lists to the command and control server,
who would then distribute the list to all other nodes.

A preliminary correlation test was devised that tested whether there was any linkage
between a source IP addresses logged between the multiple nodes, before a test was
done to see if the security posture could be improved by increasing the nodes. The re-
search yielded mixed results, showing that there was almost no linkage between source
IP addresses logged by the different nodes. This meant that there was no advantage in
extending Amber’s source IP address stream to include that of multiple nodes across dif-
ferent geographical regions. This also questions the usefulness of initiatives that attempt
to apply threat data from one region onto other regions. A secondary test, the 360-day
OpenBlacklist IP list, was also compared to the source IP addresses that were captured
by the geographically distributed Amber nodes. As with the previous test, there were
no common source IP addresses found, but the data in chapter 4 does show that there
is a distinct bias towards countries that have a well-developed information technology
infrastructure.

The data that was captured by Amber did reveal two methods of potentially gathering
threat intelligence. A method was devised that attributed each IP address to an originat-
ing country, and then built a list of top countries that hosted malicious traffic. Multiple
nodes’ lists were combined and weighted based on attack prevalence, which resulted in
a weighted list of countries. The weights could then be applied to other signature-based
controls to increase the priority of potential incidents from those regions. The second
method was originally thought to be applied on information gathered by multiple nodes
but was later only valid on single nodes. The local bias method once again transforms the
data into their attributed countries and looks for a strong bias towards a certain destina-
tion port. Potential incidents that are attributed to such a country, and which are using
the same TCP/IP port that it was biased towards, should have their priority increased.
The architecture was also discussed and outlined a method that Amber can be inexpen-
sively deployed and managed, and that it is able to scale, benefiting from economies of
scale when more nodes are added along with a command and control server.

90

5.1 Research Goals

The goal of this research was to design a security control that adhered to the restrictions
of a hybrid security model, as detailed in section 3.2. Further more section 3.2 also placed
three Critical Success Factors (CSF) on the control that had to be met in order for it to
be a viable security control. The three CSF were:

• Zero-interaction system

• Near zero false positive rate

• Improves the security posture of the environment

A theoretical hybrid model was successfully constructed by combining two known security
models, DtP and DtD, by reusing the presence based Discovery phase of the DtP model
and the relative information based Action phase of the DtD model. Section 3.3 showed
that a technical implementation of this hybrid model, named Amber, could be constructed
making it possible to test it against the three CSF to judge the models success. The factors
were tested in section 4.2 and section 4.3 by analysing the data collected by Amber nodes.

While section 3.3.4 does layout a plan that required continual human interaction with the
system, it was for the purpose of evaluating the security control’s effectiveness and not a
process that would need to be repeated when Amber was deployed. Section 4.3 speaks to
this point, as the deployed international Amber nodes operated independently for many
months. Therefore this research managed to completely fulfil the first CSF of being a
zero-interaction system.

The second CSF is more difficult to test, because of the nature of presence decision
making. Because the model only used a presence based Discovery phase to mark incoming
connections as malicious, the probability of a false positive is small. As stated in section
3.1.1 DtP presence based Discovery phase systems are deployed on informational assets
that have no productive use, so connections made to them also have no productive use.
While it may be difficult to show with a high degree of certainty that the connections
that Amber logged were malicious, what can be said with a high degree of certainty is

91

that the connections that Amber logged had no valid reason for making that connection.
Therefore this research managed to fulfil the second CSF of operating at a near zero false
positive rate.

Section 4.2 dissects the data captured by a single Amber node and finds that if the system
was connected to an upstream network enforcer it would have prevented connections to
potentially vulnerable network assets that resided on the same segment as the node. This
means that if a completed Amber node was deployed on an environment, the overall
security posture of the environment would have been improved by its presence. This fully
satisfies the third CSF of improving the security posture of the network segment.

Based on the above findings, this research was successful in the goals initially set out in
section 1.2.

5.2 Remarks on Research Findings

The process of factorising well known concepts or data into meta-concepts and metadata is
a recurring theme throughout this work. It is a process that managed to yield new methods
of securing informational assets, as well as identifying additional ways of supplementing
signature based security controls. This process allows for complex analysis post data
collection, by transforming simplistic data that has already been collected (such as source
IP addresses), into complex metadata which is then analysed. There is of course a degree
of data integrity that is lost when it is transformed into metadata. This is seen when
IP addresses were attributed to regions of potential origin in section 4.4 where certain
regions did not have accurate IP to GPS translation. But this loss of data integrity can be
acceptable as long as the conclusions that are drawn from the metadata are interpreted
with that in mind.

The weighted scoring method categorises attributed regions according to a level of ma-
licious threat activity, but it then uses that conclusion to supplement signature-based
systems by increasing the scores of connections that are also attributed to high-risk re-
gions. It does not propose restricting all access from the highest risk region because
there is not enough confidence in the transformed metadata to make such a heavy handed
decision.

92

That being said the research does show that there are differences in how regions are at-
tacked, which is interesting because it adds a layer of physical data to a realm (cyberspace)
that is theoretically without borders. The research suggests that there are more factors
to consider when deciding where to physically host a service than just network latency.
It would seem that certain regions experience more attacks of a specific kind, compared
to other regions, such as the network in which the United States node was placed and the
amount of 445/tcp traffic that it recorded.

5.3 Future Enhancements

There are certain aspects of this project that could not be fully explored because they fell
outside of the initial scope as detailed in section 1.3. Some of these ideas are explored in
the rest of this chapter.

There are numerous data transforms that could still be applied to the data that the Amber
nodes collect. One such example was touched on in section 4.5.4, where the connecting
IP addresses could be converted into their reverse DNS records and analysed for any
correlation in how the reverse records were constructed. This process of converting the
captured data into a different format and then looking for patterns can be compounded, by
applying the same process on the converted data. An example would be to then take the
reverse DNS records and convert them into the domain registration data, and then mine
that data for patterns. The ability to compound means that there could be an endless
amount of data transforms that could be constructed. The Command and Control server
acts as a framework for compound analysis as it already stores all the data from all the
connected nodes.

5.3.1 Geographically Distributed Nodes Linked Through Commonalities

Many organisations have networks that span across geographical regions, linking their
distributed networks over the internet. As it was shown in section 4.3, there is little
value in applying a blacklist of IP addresses that was collected in a different region,
but because these organisational networks are related through a common owner, it is

93

perceivable that there could be value in using regional blacklists. This would follow the
complex network architecture as shown in section 4.6.2, with the command and control
server. The command and control server would be able to first verify if there are any
common IP addresses in the data that the distributed nodes capture, showing that the
common linkage does improve the intelligence that the nodes capture, and then distribute
the combined IP blacklist to all network enforcers, in all regions. This was deemed out
of scope because it would require finding an organisation that would be willing to deploy
multiple Amber nodes across their geographical footprint, and connect them to an Amber
command and control system. A global enterprise was approached with the idea but was
rejected due to the enterprise wanting to place restrictions on information disclosure from
the deployment.

5.3.2 Impacts of Time Zone on the Connections

Section 3.4 mentioned that the three distributed nodes were placed in three different
time zones so as to increase the differences between them, but the effect of different time
zones was not fully quantified in this research. This could be further explored increasing
the amount of nodes across different time zones, and specifically track the changes in
the profile of the IP addresses that attempt connections to the nodes. Possible research
goals would be to investigate if there is a correlation between the time zone difference of
the attributed attack country and the victim node’s country. Time zone analysis could
also potentially show if attacking malware is installed on workstations that traditionally
are only powered on during office hours. This was outside of the scope of this research
because it would require deploying multiple Amber nodes, in all time zones which creates
an Amber ecosystem that is not reflective of a typical enterprise.

5.3.3 Deeper Understanding of Attacker and Victim Bias

Section 4.5 shows that different geographical nodes were favoured as victims to certain
attacking regions. While some of the regions such as China were consistently present in
all of the nodes’ data, other attributed countries, such as Taiwan, were only seen on a
certain node. It was not possible to analyse why certain victim regions were attractive

94

targets for specific regions because it required a level of detail in the captured data that
was simply not present because it was out of the original scope for the Amber ecosystem
(only recording source IP addresses).

5.3.4 Basic Automated Reporting

A malicious host on a network is not only a danger to the victim of the attacking machine,
but it is also a liability to the infrastructure hoster. The methods that malware use to
spread, as noted by Garetto et al. (2003), are bandwidth intensive because searches for
vulnerable machines are not targeted. Instead large blocks of IP addresses are scanned. It
is therefore economically significant for datacentre providers to quickly dismantle systems
that are hosting malware on their infrastructure. Serving this goal, Amber nodes could
be deployed into the datacentres of participating hosting providers across the globe, and
could report the IP addresses that are captured to an Amber command and control
server. The command and control server would have a list of IP ranges that each of the
datacentre providers own, and would inform them if any of the IPs that the distributed
Amber nodes report belong to them. This would give infrastructure owners an automated
method of locating malware on their infrastructure. As section 3.3 showed, an Amber
node requires very little resources to be deployed, meaning it could easily be slotted into
a datacentre in exchange for any information that pertains to that particular hosting
provider’s infrastructure. This form of Amber deployment is specialised and out of the
scope for this research as it does not reflect a typical enterprise deployment.

5.3.5 Normalise Scoring Based on Socioeconomic Data

When the attributed locations of the sourse IP addresses were visualised in section 4.4,
it showed that regions such as North Africa had almost no connections attributed back
to it. The weighted scoring system would ignore regions such as Chad because of the
low amount of connections that were attributed to it, compared to Germany from which
many connections originated. This does not mean that Germany is more malicious than
Chan, only that Germans have relatively more access to internet connected computers
than Chad. Future initiatives would normalise the data that was collected by the Amber

95

nodes for this and other non-information security metrics. This was deemed as outside
of the scope for Amber as it focuses more on the school of Economics than Computer
Science.

5.3.6 IPv6 Integration

Future versions of the Amber ecosystem will need to be able to support IPv6 as it becomes
more prevalent in enterprise networks. This will be needed to keep Amber viable in the
future.

96

References

S. Acharya, J. Wang, Z. Ge, T. Znati, and A. Greenberg. Simulation study of firewalls
to aid improved performance. In Simulation Symposium, 2006. 39th Annual, pages
8–16pp. IEEE, 2006.

D. Akkaya and F. Thalgott. Honeypots in Network Security: How to monitor and
keep track of the newest cyber attacks by trapping hackers. LAP Lambert Academic
Publishing, 2012. URL http://lnu.diva-portal.org/smash/get/diva2:327476/

FULLTEXT01.

E. Alata, V. Nicomette, M. Kaâniche, M. Dacier, and M. Herrb. Lessons learned from
the deployment of a high-interaction honeypot. Dependable Computing Conference, 6:
39–46, 2006.

C. Alme and D. Eardly. Mcafee anti-malware engines: Values and technolo-
gies. Online, 2010. URL http://www.mcafee.com/us/resources/reports/

rp-anti-malware-engines.pdf. Accessed on 19 Oct 2013.

L. Auriemma. Details about the ms12-020 proof-of-concept leak. Online, March 2012.
URL http://aluigi.altervista.org/adv/ms12-020_leak.txt. Accessed on 20 Mar
2012.

P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling. The nepenthes platform:
An efficient approach to collect malware. In Recent Advances in Intrusion Detection
9th International Symposium, RAID 2006, volume 4129, pages 165–184, Hamburg,
Germany, 2006. Springer.

M. Bailey, E. Cooke, F. Jahanian, D. Watson, and J. Nazario. The blaster worm: Then
and now. Security & Privacy, IEEE, 3(4):26–31, 2005.

E. Balas and C. Viecco. Towards a third generation data capture architecture for hon-
eynets. In Information Assurance Workshop, 2005. IAW’05. Proceedings from the Sixth
Annual IEEE SMC, pages 21–28. IEEE, 2005.

D. Bernardo, P. João, C. A. Anderson, M. Nascimento, D. Amaral, and R. Timóteo de
Sousa Júnior. Blind automatic malicious activity detection in honeypot data. Interna-
tional Conference on Forensic Computer Science, 6:142–152, 2011.

97

D. J. Bernstein. Syn cookies. Online, Feb 1997. URL http://cr.yp.to/syncookies.

html. Accessed on 11 Feb 2013.

T. Caldwell. Locking down the VPN. Network Security, 2012(6):14 – 18, 2012. ISSN
1353-4858. doi: http://dx.doi.org/10.1016/S1353-4858(12)70055-7. URL http://www.

sciencedirect.com/science/article/pii/S1353485812700557.

G. Chamales. The honeywall cd-rom. Security & Privacy, IEEE, 2(2):77–79, 2004.

D. B. Chapman and E. D. Zwicky. Building Internet Firewalls. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 1st edition, 1995. ISBN 1565921240.

Z. Chen, L. Gao, and K. Kwiat. Modeling the spread of active worms. In INFOCOM 2003.
Twenty-Second Annual Joint Conference of the IEEE Computer and Communications.
IEEE Societies, volume 3, pages 1890–1900. IEEE, 2003.

L. Cherkasova. Flex: Load balancing and management strategy for scalable web hosting
service. In Computers and Communications, 2000. Proceedings. ISCC 2000. Fifth IEEE
Symposium on, pages 8–13. IEEE, 2000.

B. Cheswick. An evening with Berferd in which a cracker is lured, endured, and studied.
In Proceedings Winter USENIX Conference, San Francisco, 1992.

F. Cohen. Models of practical defenses against computer viruses. Computers & Security,
8(2):149 – 160, 1989. ISSN 0167-4048. doi: 10.1016/0167-4048(89)90070-9. URL
http://www.sciencedirect.com/science/article/pii/0167404889900709.

F. Cohen. A note on the role of deception in information protection. Electronically, 11
2012. URL http://all.net/journal/deception/deception.html. Accessed on 25
Oct 2013.

M. J. Coss, D. L. Majette, and R. L. Sharp. Methods and apparatus for a computer
network firewall with stateful packet filtering, Oct. 31 2000. US Patent 6,141,749.

M. Cova, C. Kruegel, and G. Vigna. Detection and analysis of drive-by-download attacks
and malicious javascript code. In Proceedings of the 19th international conference on
World Wide Web, pages 281–290. ACM, 2010.

98

S. Das. Your UNIX: The Ultimate Guide. McGraw-Hill, Inc., New York, NY, USA, 2
edition, 2006. ISBN 0072520426, 9780072520422. ISBN: 9780072520422.

A. P. de Barros. Res: Honeytokens and detection. Online, April 2003. URL http:

//seclists.org/focus-ids/2003/Apr/18. Accessed 3 Jan 2014.

J. Dickinson. The new anti-virus formula. Online, 2005. URL http://ebooks.z0ro.

com/ebooks/Virus/ironport_new_anti-virus_formula.pdf. Access on 1 Oct 2012.

Z. Durumeric, E. Wustrow, and J. A. Halderman. Zmap: Fast internet-wide scanning
and its security applications. In Proceedings of the 22nd USENIX Security Symposium,
pages 605–619, 2013.

M. Egele, E. Kirda, and C. Kruegel. Mitigating drive-by download attacks: Challenges
and open problems. In iNetSec 2009–Open Research Problems in Network Security,
pages 52–62. Springer, 2009.

Exogen. A geocoding toolbox for python. Online, 02 2010. URL https://code.google.

com/p/geopy/. Accessed on 18 Mar 2013.

E. W. Felten, D. Balfanz, D. Dean, and D. S. Wallach. Web spoofing: An internet con
game. Software World, 28(2):6–8, 1997.

P. Ferguson. Rfc 2827: Network ingress filtering: Defeating denial of service attacks which
employ ip source address spoofing. IETF, 2000. URL http://tools.ietf.org/html/

rfc2827.html.

D. P. Fidler. Economic cyber espionage and international law: Controversies involv-
ing government acquisition of trade secrets through cyber technologies. Online,
Oct 2013. URL http://internationallawandpractice.ncbar.org/newsletters/

internationallawoctober2013/espionage. Accessed on 18 Sep 2013.

N. Fitzgibbon and M. Wood. Conficker. c: A technical analysis. Online,
2009. URL http://www.sophos.com/medialibrary/PDFs/marketing%20material/

confickeranalysis.pdf. Accessed on 3 Jul 2013.

99

J. Francois, O. Festor, et al. Activity monitoring for large honeynets and network tele-
scopes. International Journal On Advances in Systems and Measurements, 1(1):1–13,
2009.

D. Gallagher. Mcafee earnings climb in second quarter. Online, July 2010. URL http:

//goo.gl/nv9fT. Accessed on 9 Feb 2013.

M. Garetto, W. Gong, and D. Towsley. Modeling malware spreading dynamics. In IN-
FOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications. IEEE Societies, volume 3, pages 1869–1879. IEEE, 2003.

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual
machine-based platform for trusted computing. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, SOSP ’03, pages 193–206, New York,
NY, USA, 2003. ACM. ISBN 1-58113-757-5. doi: 10.1145/945445.945464. URL
http://0-doi.acm.org.wam.seals.ac.za/10.1145/945445.945464.

I. Gashi, V. Stankovic, C. Leita, and O. Thonnard. An experimental study of diversity
with off-the-shelf antivirus engines. In Network Computing and Applications, 2009.
NCA 2009. Eighth IEEE International Symposium on, pages 4–11. IEEE, 2009.

J. G. Göbel and A. Dewald. Client-Honeypots: Exploring Malicious Websites. Oldenbourg
Verlag, Berlin, Germany, 2011. ISBN: 9783486711516.

R. Heady, G. Luger, A. Maccabe, and M. Servilla. The architecture of a network-level
intrusion detection system. Department of Computer Science, College of Engineering,
University of New Mexico, 1990. doi: 10.2172/425295.

L. T. Heberlein and M. Bishop. Attack class: Address spoofing. In Proceedings of the
19th National Information Systems Security Conference, pages 371–377, 1996.

M.-Y. Huang, R. J. Jasper, and T. M. Wicks. A large scale distributed intrusion detection
framework based on attack strategy analysis. Computer Networks, 31(23):2465–2475,
1999.

B. Huffaker, D. Plummer, D. Moore, and K. Claffy. Topology discovery by active prob-
ing. In Applications and the Internet (SAINT) Workshops, 2002. Proceedings. 2002
Symposium on, pages 90–96. IEEE, 2002.

100

J. Hunker, B. Hutchinson, and J. Margulies. Role and challenges for sufficient cyber-attack
attribution. Whitepaper, 2008. URL http://www.thei3p.org/docs/publications/

whitepaper-attribution.pdf. Accessed on 3 Jun 2013.

C. Iheagwara, F. Awan, Y. Acar, and C. Miller. Maximizing the benefits of intrusion
prevention systems: Effective deployments strategies. In Proceedings of the 18th Annual
Forum of Incident Response and Security Teams (FIRST) Conference, 2006.

S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith. Implementing a dis-
tributed firewall. In Proceedings of the 7th ACM conference on Computer and commu-
nications security, pages 190–199. ACM, 2000.

B. Irwin. A source analysis of the conficker outbreak from a network telescope. South
African Institute of Electrical Engineers African Research Journal, 104(2):38–53, Jun
2013a.

B. Irwin. A baseline study of potentially malicious activity across five network telescopes.
In Cyber Conflict (CyCon), 2013 5th International Conference on, pages 1–17. IEEE,
2013b.

ITweb. It salary survey july 2013. Online, July 2013. URL http://goo.gl/mZCbrx.
Accessed on 13 Jan 2014.

D. Kaminsky. Rdp and the critical server attack surface. Online, Mar 2012. URL
http://dankaminsky.com/2012/03/18/rdp/. Accessed on 25 May 2013.

D. Kaminsky. Black ops of tcp/ip 2011. In Black Hat USA 2011, page 44.
Black Hat USA 2011, 2011. URL http://www.slideshare.net/dakami/

black-ops-of-tcpip-2011-black-hat-usa-2011.

G. Keizer. Symantec false positive cripples thousands of chinese pcs. Online, May
2007. URL http://www.computerworld.com/s/article/9019958/Symantec_false_

positive_cripples_thousands_of_Chinese_PCs. Accessed on 5 Jan 2014.

D. Kennedy. Project artillery - the most advanced threat intelligence solution. Electronic,
05 2012. URL https://www.trustedsec.com/downloads/artillery/. Accessed on
23 Feb 2013.

101

K. Kent and M. Souppaya. Guide to computer security log management. NIST special
publication, pages 800–92, 2006.

J. Koziol. Intrusion detection with SNORT. Sams Publishing, Indianapolis, USA, 2003.
ISBN 157870281X.

N. Krawetz. Anti-honeypot technology. IEEE Security & Privacy, 2:76–79, 2004.

C. Kreibich and J. Crowcroft. Honeycomb: creating intrusion detection signatures using
honeypots. ACM SIGCOMM Computer Communication Review, 34(1):51–56, 2004.

G. Kress and T. Van Leeuwen. Reading images: The grammar of visual design. Routledge,
London, England, 2006. ISBN 0203619722.

I. Kuwatly, M. Sraj, and Z. A. Masri. A dynamic honeypot design for intrusion detection.
In Pervasive Services, pages 95–104, American University of Beirut, Lebanon, July
2004. IEEE/ACS International Conference, IEEE.

J. Lell. Quick blind tcp connection spoofing with syn cookies. Elec-
tronic, August 2013. URL http://www.jakoblell.com/blog/2013/08/13/

quick-blind-tcp-connection-spoofing-with-syn-cookies/. Accessed on 15 Au-
gust 2013.

J. Leyden. Kaspersky blocks bbc news over false phishing fears. Online, Jul 2010. URL
http://www.theregister.co.uk/2010/07/15/kaspersky_blocks_bbc_news/. Ac-
cessed on 5 Jan 2014.

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh. 1-tb/s single-channel coherent optical
ofdm transmission over 600-km ssmf fiber with subwavelength bandwidth access. Optics
express, 17(11):9421–9427, 2009.

Mandiant Central Intelligence, MCI. Apt1 exposing one of china’s cyber espi-
onage units. Online, February 2013. URL https://www.mandiant.com/blog/

mandiant-exposes-apt1-chinas-cyber-espionage-units-releases-3000-indicators/.
Accessed on 18 Feb 2013.

102

P. K. Manna, S. Chen, and S. Ranka. Inside the permutation-scanning worms: Propaga-
tion modeling and analysis. Networking, IEEE/ACM Transactions on, 18(3):858–870,
2010.

MaxMind. Geoip products. Online, Mar 2013. URL http://dev.maxmind.com/geoip/.
Accessed on 18 Mar 2013.

McAfee. Mcafee inc, form 10k. Electronic, Dec 2010. URL http://goo.gl/j79oSw.
Accessed on 30 Aug 2013.

B. McCarty. The honeynet arms race. Security & Privacy, IEEE, 1(6):79–82, 2003.

D. McPherson and B. Dykes. Vlan aggregation for efficient ip address allocation (rfc3069).
IETF, 2001. URL http://tools.ietf.org/pdf/rfc3069.pdf. Accessed 2 Jul 2013.

B. Merino. Instant Traffic Analysis with Tshark How-to. Packt Publishing, Birmingham,
England, 2013. ISBN 9781782165392.

E. Michelakis, I. Androutsopoulos, G. Paliouras, G. Sakkis, and P. Stamatopoulos. Fil-
tron: A learning-based anti-spam filter. In Proceedings of The 1st Conference On Email
And Anti-Spam, pages 231–240. Citeseer, 2004.

Micosoft. Microsoft security bulletin ms08-067 - critical. Online, Oct 2008. URL http://

technet.microsoft.com/en-us/security/bulletin/ms08-067. Accessed on 10 Jan
2014.

Microsoft. Mcafee delivers a false-positive detection of the w32/wecorl.a virus when ver-
sion 5958 of the dat file is used print print email email. Online, June 2010. URL
http://support.microsoft.com/kb/2025695. Accessed on 19 Aug 2012.

Microsoft. Microsoft security bulletin ms12-020 - critical. Online, April 2012. URL http:

//technet.microsoft.com/en-za/security/bulletin/MS12-020. Accessed on 10
May 2012.

D. Moore, C. Shannon, et al. Code-red: a case study on the spread and victims of
an internet worm. In Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
measurment, pages 273–284. ACM, 2002.

103

National Vulnerbaility Database. Database search. Electronic, October 2013. URL http:

//goo.gl/4iqge6. Accessed on 13 Oct 2013.

J. Nazario. Phoneyc: A virtual client honeypot. In Proceedings of the 2nd USENIX
conference on Large-scale exploits and emergent threats: botnets, spyware, worms, and
more, pages 6–6. USENIX Association, 2009.

R. M. Needham. Denial of service. In Proceedings of the 1st ACM Conference on Computer
and Communications Security, pages 151–153. ACM, 1993.

Net Security. Apple confirms being hit in recent watering hole attack. Electronic, February
2013. URL http://www.net-security.org/secworld.php?id=14449. Accessed on 12
Dec 2013.

H. Nomura, A. Watanabe, E. Tartakowskï, and E. Six. Vulnerability scanner: The com-
plete toolsbox. Metis, 2:1, 2007.

J. Oberheide, E. Cooke, and F. Jahanian. Cloudav: N-version antivirus in the network
cloud. In Proceedings of the 17th conference on Security symposium, pages 91–106.
USENIX Association, 2008.

V. N. Padmanabhan and L. Subramanian. An investigation of geographic mapping tech-
niques for internet hosts. ACM SIGCOMM Computer Communication Review, 31(4):
173–185, 2001.

R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson. Characteristics of
internet background radiation. In Proceedings of the 4th ACM SIGCOMM conference
on Internet measurement, pages 27–40. ACM, 2004.

P. Phaal. Method to associate input and output interfaces with packets read from a mirror
port, July 17 2007. US Patent 7,245,587.

PhiBo. Dionaea is meant to be a nepenthes successor, embedding python as scripting
language, using libemu to detect shellcodes, supporting IPv6 and TLS. Electronic, 12
2013. URL http://dionaea.carnivore.it. Accessed on 29 Aug 2013.

I. Poese, S. Uhlig, M. A. Kaafar, B. Donnet, and B. Gueye. Ip geolocation databases:
unreliable? ACM SIGCOMM Computer Communication Review, 41(2):53–56, 2011.

104

P. Porras, H. Saidi, and V. Yegneswaran. Conficker c analysis. Online, 2009. URL
http://goo.gl/XGvn9s. Accessed 10 Jun 2012.

J. Postel. Rfc 793: Transmission control protocol, 2003.

PR Newswire. Network associates ships cybercop sting - industry’s first ’decoy’ server
silently traces and tracks hacker activity. Electronic, October 1998. URL http://goo.

gl/jbvo7. Accessed on 10 Sep 2012.

K. M. Prasad, A. Reddy, and M. G. Karthik. Flooding attacks to internet threat monitors
(ITM): modeling and counter measures using botnet and honeypots. International
Journal of Computer Science & Information Technology (IJCSIT), 6:159 – 172, 2012.

N. Provos. Honeyd-a virtual honeypot daemon. In 10th DFN-CERT Workshop, February
2003.

K. Rieck, T. Krueger, and A. Dewald. Cujo: efficient detection and prevention of drive-by-
download attacks. In Proceedings of the 26th Annual Computer Security Applications
Conference, pages 31–39. ACM, 2010.

A. Schiemenz and H. Igel. Accelerated 3-d full-waveform inversion using simultaneously
encoded sources in the time domain: application to valhall ocean-bottom cable data.
Geophysical Journal International, 195(3):1970–1988, 2013.

C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A. Sundaram, and D. Zam-
boni. Analysis of a denial of service attack on TCP. In Security and Privacy, 1997.
Proceedings., 1997 IEEE Symposium on, pages 208–223. IEEE, 1997.

B. Scottberg, W. Yurcik, and D. Doss. Internet honeypots: Protection or entrapment? In
International Symposium on Technology and Society, 2002.(ISTAS’02)., pages 387–391.
IEEE, 2002.

C. Seifert, I. Welch, P. Komisarczuk, et al. Honeyc-the low-interaction client honey-
pot. Proceedings of the 2007 The 6th New Zealand Computer Science Research Student
Conference, Waikato University, Hamilton, New Zealand, 1:15–21, 2007.

Sherwyn. Ms12-020 rdp vulnerability overview and testing. Online, March 2012. URL
http://infolookup.securegossip.com/tag/metasploit/. Accessed on 11 Aug 2012.

105

C. Sheth and R. Thakker. Performance evaluation and comparison of network firewalls un-
der ddos attack. International Journal of Computer Network and Information Security
(IJCNIS), 5(12):60, 2013.

S. Shin and G. Gu. Conficker and beyond: a large-scale empirical study. In Proceedings
of the 26th Annual Computer Security Applications Conference, pages 151–160. ACM,
2010.

S. A. Slaughter, D. E. Harter, and M. S. Krishnan. Evaluating the cost of software quality.
Communications of the ACM, 41(8):67–73, 1998.

L. Spitzner. Honeypots: Tracking Hackers. Addison Wesley, Boston, United States,
September 2002. ISBN: 0-321-10895-7.

L. Spitzner. To build a honeypot. Online, 1999. URL http://www.spitzner.net/

honeypot.html. Accessed on 5 Feb 2012.

L. Spitzner. Honeypots: Catching the insider threat. In Computer Security Applications
Conference, 2003. Proceedings. 19th Annual, pages 170–179. IEEE, 2003.

W. R. Stevens and G. R. Wright. TCP/IP Illustrated: Vol. 2: The Implementa-
tion, volume 2. Addison-Wesley Professional, Indianapolis, IN, USA, 1995. ISBN
9780201633542.

C. Stoll. The cuckoo’s egg: tracking a spy through the maze of computer espionage. Pocket,
New York, USA, 1995. ISBN 0671726889.

S. Sudaharan, S. Dhammalapathi, S. Rai, and D. Wijesekera. Knowledge sharing hon-
eynets. In Information Assurance Workshop, 2005. IAW’05. Proceedings from the Sixth
Annual IEEE SMC, pages 240–243. IEEE, 2005.

M. Tanase. Ip spoofing: an introduction. Security Focus, 11:30–37,
2003. URL http://66.14.166.45/sf_whitepapers/tcpip/IP%20Spoofing%20-%

20An%20Introduction.pdf. Accessed on 19 Aug 2012.

S. J. Templeton and K. E. Levitt. Detecting spoofed packets. In DARPA Information
Survivability Conference and Exposition, 2003. Proceedings, volume 1, pages 164–175.
IEEE, 2003.

106

B. Tierney, B. Crowley, D. Gunter, J. Lee, and M. Thompson. A monitoring sensor
management system for grid environments. Cluster Computing, 4(1):19–28, 2001.

M. Vizváry and J. Vykopal. Flow-based detection of rdp brute-force attacks. In Proceed-
ings of 7th International Conference on Security and Protection of Information (SPI
2013), 2013.

M. J. Warren and W. Hutchinson. Australian hackers and ethics. Australasian journal of
information systems, 10(2):151–156, 2007.

S. Wei, A. Hussain, J. Mirkovic, and C. Ko. Tools for worm experimentation on the deter
testbed. International Journal of Communication Networks and Distributed Systems,
5(1):151–171, 2010.

H. Welte. The netfilter framework in linux 2.4. In Proceedings of Linux Kongress, 2000.
URL http://goo.gl/GkxzSt. Accessed on 7 Mar 2012.

G. Wicherski. Medium interaction honeypots. Online, 2006. URL http://goo.gl/

tHDYzm. Access on 4 Jun 2013.

E. Willems. Number of new computer viruses at record high. Electronic, Septem-
ber 2010. URL https://www.gdatasoftware.co.uk/press-center/news/article/

article/1760-number-of-new-computer-viruses.html. Accessed on 30 Aug 2013.

J. B. Williams. Entrapment. A legal limitation on police techniques. The Journal of
Criminal Law, Criminology, and Police Science, 48(3):343–348, 1957.

M. Wolfgang. Host discovery with nmap. Online, 2002. URL http://moonpie.org/

writings/discovery.pdf. Accessed on 20 Nov 2013.

World Bank Development Data Group. World Development Indicators 2012. World Bank-
free PDF, Washington, D.C., USA, 2012. ISBN 9780821389850.

X.-R. Yang, Q.-B. Song, and J.-Y. Shen. Intrusion detection system. In Proceedings of
2001 International Conferences on Info-tech and Infonet (ICII), pages 19–23, 2001.

F. Yarochkin. Nmap. Electronic, Decemeber 2013. URL http://nmap.org/. Accessed
on 13 Nov 2013.

107

V. Yegneswaran, P. Barford, and J. Ullrich. Internet intrusions: global characteristics and
prevalence. In ACM SIGMETRICS Performance Evaluation Review, volume 31, pages
138–147. ACM, 2003.

T. Ylonen. Ssh–secure login connections over the internet. In Proceedings of the 6th
USENIX Security Symposium, pages 37–42, 1996.

F. Zhang, S. Zhou, Z. Qin, and J. Liu. Honeypot: a supplemented active defense system for
network security. In Parallel and Distributed Computing, Applications and Technologies,
2003. PDCAT’2003. Proceedings of the Fourth International Conference on, pages 231–
235. IEEE, 2003.

X.-s. Zhang, T. Chen, J. Zheng, and H. Li. Proactive worm propagation modeling and
analysis in unstructured peer-to-peer networks. Journal of Zhejiang University SCI-
ENCE C, 11(2):119–129, 2010.

C. C. Zou and R. Cunningham. Honeypot-aware advanced botnet construction and main-
tenance. In Dependable Systems and Networks, 2006. DSN 2006. International Con-
ference on, pages 199–208. IEEE, 2006.

108

